Abstract

Photonic nanojets have been previously shown (both theoretically and experimentally) to be highly sensitive to the presence of an ultra-subwavelength nanoscale particle within the nanojet. In the present work, photonic nanojets elongated by almost an order of magnitude (relative to the latest previously published work) are found to possess another key characteristic: they are sensitive to the presence of ultra-subwavelength nanoscale thin features embedded within a dielectric object. This additional characteristic of photonic nanojets is demonstrated through comparisons between fundamentally different 3-D and corresponding 1-D full Maxwell’s equations finite-difference time-domain (FDTD) models.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [CrossRef] [PubMed]
  2. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [CrossRef] [PubMed]
  3. A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
    [CrossRef]
  4. A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
    [CrossRef] [PubMed]
  5. S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
    [CrossRef] [PubMed]
  6. J. J. Simpson, “Extended Photonic Nanojets for Obtaining the Internal Composition of a Dielectric Slab,” Proc. URSI National Radio Science Meeting, Boulder, CO, Jan. (2010).
  7. J. J. Simpson, “Optical detection of a narrow ultra-subwavelength-thin dielectric layer via cepstral analysis of photonic nanojet backscattering,” Proc. Photonics North, Niagara Falls, Canada, June (2010).
  8. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 3rd ed. (Norwood, MA: Artech House, 2005).
  9. R. Nevels and J. Jeong, “The time domain Green’s function and propagator for Maxwell’s equations,” IEEE Trans. Antenn. Propag. 52(11), 3012–3018 (2004).
    [CrossRef]
  10. J. F. Poco, and L. W. Hrubesh, “Method of producing optical quality glass having a selected refractive index,” U.S. Patent 6,158,244, (2008).
  11. Z. B. Wang, W. Guo, A. Pena, D. J. Whitehead, B. S. Luk’yanchuk, L. Li, Z. Liu, Y. Zhou, and M. H. Hong, “Laser micro/nano fabrication in glass with tunable-focus particle lens array,” Opt. Express 16(24), 19706–19711 (2008).
    [CrossRef] [PubMed]
  12. J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficieint FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
    [CrossRef]

2009 (2)

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (1)

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

2005 (1)

2004 (2)

2000 (1)

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficieint FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
[CrossRef]

Backman, V.

Chen, Z.

Gedney, S. D.

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficieint FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
[CrossRef]

Guo, W.

Heifetz, A.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

Hong, M. H.

Huang, K.

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

Jeong, J.

R. Nevels and J. Jeong, “The time domain Green’s function and propagator for Maxwell’s equations,” IEEE Trans. Antenn. Propag. 52(11), 3012–3018 (2004).
[CrossRef]

Kong, S.-C.

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[CrossRef] [PubMed]

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Li, L.

Li, X.

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[CrossRef] [PubMed]

Liu, Z.

Luk’yanchuk, B. S.

Nevels, R.

R. Nevels and J. Jeong, “The time domain Green’s function and propagator for Maxwell’s equations,” IEEE Trans. Antenn. Propag. 52(11), 3012–3018 (2004).
[CrossRef]

Pena, A.

Roden, J. A.

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficieint FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
[CrossRef]

Sahakian, A.

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

Sahakian, A. V.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Taflove, A.

Wang, Z. B.

Whitehead, D. J.

Zhou, Y.

Appl. Phys. Lett. (1)

A. Heifetz, K. Huang, A. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

R. Nevels and J. Jeong, “The time domain Green’s function and propagator for Maxwell’s equations,” IEEE Trans. Antenn. Propag. 52(11), 3012–3018 (2004).
[CrossRef]

J Comput Theor Nanosci (1)

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009).
[CrossRef] [PubMed]

Microw. Opt. Technol. Lett. (1)

J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficieint FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000).
[CrossRef]

Opt. Express (4)

Other (4)

J. F. Poco, and L. W. Hrubesh, “Method of producing optical quality glass having a selected refractive index,” U.S. Patent 6,158,244, (2008).

J. J. Simpson, “Extended Photonic Nanojets for Obtaining the Internal Composition of a Dielectric Slab,” Proc. URSI National Radio Science Meeting, Boulder, CO, Jan. (2010).

J. J. Simpson, “Optical detection of a narrow ultra-subwavelength-thin dielectric layer via cepstral analysis of photonic nanojet backscattering,” Proc. Photonics North, Niagara Falls, Canada, June (2010).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 3rd ed. (Norwood, MA: Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Extreme sensitivity of the amplitude of a backscattered nanojet to a gold nanoparticle. The dotted path is 240 nm from the microsphere surface at the closest point [4].

Fig. 2
Fig. 2

Visualization of an elongated photonic nanojet generated by a plane-wave-illuminated, six-layer radially graded dielectric microsphere of 5 μm diameter. The incident wave is polarized along x-axis and propagates along the z-axis.

Fig. 3
Fig. 3

2-D slice of the geometry of a 3-D six-layer radially graded dielectric microsphere exciting the 2-μm test dielectric cube, here shown with the 25-nm-thin film-like inhomogeneity embedded at the middle of the z direction.

Fig. 4
Fig. 4

2-D example illustration of a slab having a dielectric thin film at its center analogous to the cube of Fig. 3. The dashed line represents the 1-D FDTD grid. The slab is illuminated via a plane wave, and the slab is infinite in the transverse directions to the incident plane wave.

Fig. 5
Fig. 5

Comparison of the cepstra of the 3-D nanojet-illuminated n = 1.3 homogeneous cube and the 1-D plane-wave-illuminated n = 1.3 homogeneous slab.

Fig. 6
Fig. 6

Comparison of the cepstra as in Fig. 5, but now both the 3-D nanojet-illuminated cube and the 1-D plane-wave-illuminated slab have a 25-nm (λ/20) n = 1.4 film-like inhomogeneity embedded at their midpoint depths. For convenience, the nanojet-illuminated homogeneous cepstrum is also shown.

Fig. 7
Fig. 7

Simulation geometry similar to that of Fig. 3 except that the transverse width (W) of the 25-nm-thin film-like inhomogeneity is varied.

Fig. 8
Fig. 8

Comparison of the 3-D nanojet cepstra according to the geometry of Fig. 7 for transverse widths of the 25-nm thin inhomogeneity at 500, 750, 1500 and 2000 nm.

Fig. 9
Fig. 9

Visualization of the dielectric sphere generating a photonic nanojet as shown in Fig. 2, but with a 2 μm dielectric cube located in the path of the nanojet. The incident wave is polarized along the x-axis and propagates along the z-axis, using the same coordinate system as defined in Fig. 7.

Metrics