Abstract

Integrated silica microdisk resonators can be used to create a variety of very high performance spectral filters. These filters can control the spectral emission of an erbium doped fiber laser. By modifying the number and sizes of the microdisks constituting these filters it is possible to produce single wavelength, periodic multi-frequency and non-periodic multi-wavelength fiber lasers. Channel spacing as low as 0.28 nm and non-periodic four wavelength lasers were demonstrated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium doped fiber lasers anchored on the itu frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
    [CrossRef]
  2. J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
    [CrossRef]
  3. N. Park, and P. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
    [CrossRef]
  4. X. Dong, S. Li, K. Chiang, M. Ng, and B. Chu, “Multiwavelength erbium-doped fibre laser based on a high birefringence fibre loop mirror,” Electron. Lett. 36, 1609–1610 (2000).
    [CrossRef]
  5. Q. Mao, and J. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Technol. Lett. 14, 612–614 (2002).
    [CrossRef]
  6. J. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable fiber laser using a MEMS-based in plane Fabry-Pérot filter,” IEEE J. Quantum Electron. 46, 9 (2010).
    [CrossRef]
  7. X. Wang, T. Liu, V. R. de Almeida, and R. R. Panepucci, “On-chip silicon photonic wavelength control of optical fiber lasers,” Opt. Express 16, 15671–15676 (2008).
    [CrossRef] [PubMed]
  8. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-q silica disk microcavities,” IEEE J. Quantum Electron. 83, 797–799 (2003).
  9. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  10. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [CrossRef] [PubMed]
  11. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
    [CrossRef]
  12. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef] [PubMed]
  13. B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [CrossRef]
  14. M. Beaugeois, B. Pinchemel, M. Bouazaoui, M. Lesecq, S. Maricot, and J. P. Vilcot, “All-optical tunability of InGaAsP/inp microdisk resonator by infrared light irradiation,” Opt. Lett. 32, 35–37 (2007).
    [CrossRef]
  15. A. Zhang, H. Liu, M. Demokan, and H. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2535–2537 (2005).
    [CrossRef]
  16. D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
    [CrossRef]

2010 (1)

J. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable fiber laser using a MEMS-based in plane Fabry-Pérot filter,” IEEE J. Quantum Electron. 46, 9 (2010).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

2005 (1)

A. Zhang, H. Liu, M. Demokan, and H. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2535–2537 (2005).
[CrossRef]

2004 (1)

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

2003 (2)

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-q silica disk microcavities,” IEEE J. Quantum Electron. 83, 797–799 (2003).

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

2002 (1)

Q. Mao, and J. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Technol. Lett. 14, 612–614 (2002).
[CrossRef]

2000 (4)

X. Dong, S. Li, K. Chiang, M. Ng, and B. Chu, “Multiwavelength erbium-doped fibre laser based on a high birefringence fibre loop mirror,” Electron. Lett. 36, 1609–1610 (2000).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium doped fiber lasers anchored on the itu frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

1997 (1)

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

1996 (1)

N. Park, and P. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
[CrossRef]

Armani, D.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

Armani, D. K.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-q silica disk microcavities,” IEEE J. Quantum Electron. 83, 797–799 (2003).

Beaugeois, M.

Bellemare, A.

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Bouazaoui, M.

Boucher, D.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Chen, W.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Chiang, K.

X. Dong, S. Li, K. Chiang, M. Ng, and B. Chu, “Multiwavelength erbium-doped fibre laser based on a high birefringence fibre loop mirror,” Electron. Lett. 36, 1609–1610 (2000).
[CrossRef]

Chu, B.

X. Dong, S. Li, K. Chiang, M. Ng, and B. Chu, “Multiwavelength erbium-doped fibre laser based on a high birefringence fibre loop mirror,” Electron. Lett. 36, 1609–1610 (2000).
[CrossRef]

Chu, S.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Cousin, J.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

de Almeida, V. R.

Demokan, M.

A. Zhang, H. Liu, M. Demokan, and H. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2535–2537 (2005).
[CrossRef]

Dong, X.

X. Dong, S. Li, K. Chiang, M. Ng, and B. Chu, “Multiwavelength erbium-doped fibre laser based on a high birefringence fibre loop mirror,” Electron. Lett. 36, 1609–1610 (2000).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Foresi, J.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Haus, H.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Karasek, M.

Kassi, S.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-q silica disk microcavities,” IEEE J. Quantum Electron. 83, 797–799 (2003).

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Laine, J.-P.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

LaRochelle, S.

Lesecq, M.

Li, S.

X. Dong, S. Li, K. Chiang, M. Ng, and B. Chu, “Multiwavelength erbium-doped fibre laser based on a high birefringence fibre loop mirror,” Electron. Lett. 36, 1609–1610 (2000).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Lit, J.

Q. Mao, and J. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Technol. Lett. 14, 612–614 (2002).
[CrossRef]

Little, B.

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Liu, H.

A. Zhang, H. Liu, M. Demokan, and H. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2535–2537 (2005).
[CrossRef]

Liu, T.

Mao, Q.

Q. Mao, and J. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Technol. Lett. 14, 612–614 (2002).
[CrossRef]

Maricot, S.

Martin, A.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

Masselin, P.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Masson, J.

J. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable fiber laser using a MEMS-based in plane Fabry-Pérot filter,” IEEE J. Quantum Electron. 46, 9 (2010).
[CrossRef]

Min, B.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

Ng, M.

X. Dong, S. Li, K. Chiang, M. Ng, and B. Chu, “Multiwavelength erbium-doped fibre laser based on a high birefringence fibre loop mirror,” Electron. Lett. 36, 1609–1610 (2000).
[CrossRef]

Noda, S.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Panepucci, R. R.

Park, N.

N. Park, and P. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
[CrossRef]

Peter, Y.-A.

J. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable fiber laser using a MEMS-based in plane Fabry-Pérot filter,” IEEE J. Quantum Electron. 46, 9 (2010).
[CrossRef]

Pinchemel, B.

Poulin, A.

J. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable fiber laser using a MEMS-based in plane Fabry-Pérot filter,” IEEE J. Quantum Electron. 46, 9 (2010).
[CrossRef]

Rochette, M.

Romanini, D.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-q silica disk microcavities,” IEEE J. Quantum Electron. 83, 797–799 (2003).

St-Gelais, R.

J. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable fiber laser using a MEMS-based in plane Fabry-Pérot filter,” IEEE J. Quantum Electron. 46, 9 (2010).
[CrossRef]

Szriftgiser, P.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Tam, H.

A. Zhang, H. Liu, M. Demokan, and H. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2535–2537 (2005).
[CrossRef]

Tetu, M.

Vahala, K. J.

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-q silica disk microcavities,” IEEE J. Quantum Electron. 83, 797–799 (2003).

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Vilcot, J. P.

Wang, X.

Wysocki, P.

N. Park, and P. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
[CrossRef]

Zhang, A.

A. Zhang, H. Liu, M. Demokan, and H. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2535–2537 (2005).
[CrossRef]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Appl. Phys. B (1)

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

D. Armani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

Electron. Lett. (1)

X. Dong, S. Li, K. Chiang, M. Ng, and B. Chu, “Multiwavelength erbium-doped fibre laser based on a high birefringence fibre loop mirror,” Electron. Lett. 36, 1609–1610 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Masson, R. St-Gelais, A. Poulin, and Y.-A. Peter, “Tunable fiber laser using a MEMS-based in plane Fabry-Pérot filter,” IEEE J. Quantum Electron. 46, 9 (2010).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-q silica disk microcavities,” IEEE J. Quantum Electron. 83, 797–799 (2003).

IEEE Photon. Technol. Lett. (3)

Q. Mao, and J. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Technol. Lett. 14, 612–614 (2002).
[CrossRef]

N. Park, and P. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
[CrossRef]

A. Zhang, H. Liu, M. Demokan, and H. Tam, “Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 2535–2537 (2005).
[CrossRef]

J. Lightwave Technol. (2)

B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium doped fiber lasers anchored on the itu frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
[CrossRef]

Nature (3)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

a) to d) Schematic of the microfabrication process. e) SEM photograph of a single cavity filter. f) SEM photograph of a multi-cavity filter composed of four resonators with different diameters.

Fig. 2.
Fig. 2.

Optical microdisk (a) Drop and (b) Add/Drop filters. (c) Spectral transmission for Add and Drop periodic channels. Inset shows linewidth and quality factor of a resonance.

Fig. 3.
Fig. 3.

Multi-cavity filters and spectra. a) Two cavity filter with 200 µm diameter and a variation of about 40 nm to obtain a 0.29 nm spacing between the two resonances. b) Four cavity filter with 70 µm diameter and a variation of about 50 nm to obtain about 1 nm spacing between each resonance (uneven because of fabrication deviations).

Fig. 4.
Fig. 4.

a) Schematic of erbium doped fiber laser with microdisk filter. b) Spectra of laser emission (plain line) and filter transmission (dashed line), obtained using a single cavity filter with a diameter of 150 µm and a periodic FSR of 430 GHz. The laser emission is measured using an optical spectrum analyzer with a resolution of 0.02 nm.

Fig. 5.
Fig. 5.

Single mode laser emission using single 40 µm diameter cavity filter. Inset shows a measured FWHM of 0.06nm.

Fig. 6.
Fig. 6.

Emission spectra of fiber lasers using multi-microdisk filters. a)Two-wavelength using a two cavity filter, b)Non-periodic multi-wavelength using a four cavity filter

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ = 2 π Rn eff m ,
FSR ( λ ) λ 2 2 π Rn eff ,
FSR ( v ) = c 2 π Rn eff ,

Metrics