Abstract

The 3-D target information can be obtained directly by the analysis of the 1-D data of the pulse laser range profile (LRP). In this paper, a new calculational method to generate and process the LRP which is based on the lidar equation is established. The LRPs of different targets are simulated by the new method, and the corresponding profile information is achieved. The effect of the some parameters including the target shape, surface material, incident pulsewidth and incident angle on the LRP is analyzed. In order to validate the theory, the relevant experiment is implemented, and the experimental data agrees well with the simulation result.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mensa, High resolution radar imaging, (Artech House Norwood, Mass, 1981).
  2. H. Li and S. Yang, “Using Range Profiles as Feature Vectors to Identify Aerospace Objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
    [CrossRef]
  3. S. Adachi and T. Uno, “One-dimensional target profiling by electromagnetic backscattering,” J. Electromagn. Waves Appl. 7(3), 403–421 (1993).
    [CrossRef]
  4. K. Umashankar, S. Chaudhuri, and A. Taflove, “Finite-difference time-domain formulation of an inverse scattering scheme for remote sensing of inhomogeneous lossy layered media: Part I-One dimensional case,” J. Electromagn. Waves Appl. 8, 489–508 (1994).
  5. K. Harada and A. Noguchi, “Reconstruction of two dimensional rough surface with Gaussian beam illumination,” IEICE Trans. Electron. 79, 1345–1349 (1996).
  6. V. Galdi, D. A. Castanon, and L. B. Felsen, “Multifrequency reconstruction of moderately rough interfaces via quasi-ray Gaussian beams,” IEEE Trans. Geosci. Rem. Sens. 40(2), 453–460 (2002).
    [CrossRef]
  7. L. G. Shirley, and G. R. Hallerman, Appications of Tunable Lasers to Laser Radar and 3D Imaging, (Lincoln Laboratory, 1996).
  8. P. P. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, Frank J. M. van Putten, and R. H. M. A. Schleijpen, “Experimental Validation of Ship Identification with a Laser Range Profiler,” Laser Radar Technology and Applications XIII, vol. Proc. SPIE 6950, 1–12 (2008).
  9. A. M. J. v. E. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, L. H. C. Frank, J. M. van Putten, and P. W. Pace, “Laser applications in the littoral: search lidar and ship identification,” Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II, vol. Proc. SPIE 7090, 1–9 (2008).
  10. R. M. S. Johan, C. van den Heuvel, and R. H. M. A. Schleijpen, “Identification of air and sea-surface targets with a laser range profiler,” Laser Radar Technology and Applications XIV, vol. Proceedings 7323, 1–9 (2009).
  11. Y. H. Li, Z. S. Wu, and Y. J. Gong, “Ultra-short pulse laser one-dimensional range profile of a cone,” Nucl. Instr. and Meth. A (2010), doi:.

2010 (1)

Y. H. Li, Z. S. Wu, and Y. J. Gong, “Ultra-short pulse laser one-dimensional range profile of a cone,” Nucl. Instr. and Meth. A (2010), doi:.

2009 (1)

R. M. S. Johan, C. van den Heuvel, and R. H. M. A. Schleijpen, “Identification of air and sea-surface targets with a laser range profiler,” Laser Radar Technology and Applications XIV, vol. Proceedings 7323, 1–9 (2009).

2008 (2)

P. P. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, Frank J. M. van Putten, and R. H. M. A. Schleijpen, “Experimental Validation of Ship Identification with a Laser Range Profiler,” Laser Radar Technology and Applications XIII, vol. Proc. SPIE 6950, 1–12 (2008).

A. M. J. v. E. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, L. H. C. Frank, J. M. van Putten, and P. W. Pace, “Laser applications in the littoral: search lidar and ship identification,” Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II, vol. Proc. SPIE 7090, 1–9 (2008).

2002 (1)

V. Galdi, D. A. Castanon, and L. B. Felsen, “Multifrequency reconstruction of moderately rough interfaces via quasi-ray Gaussian beams,” IEEE Trans. Geosci. Rem. Sens. 40(2), 453–460 (2002).
[CrossRef]

1996 (1)

K. Harada and A. Noguchi, “Reconstruction of two dimensional rough surface with Gaussian beam illumination,” IEICE Trans. Electron. 79, 1345–1349 (1996).

1994 (1)

K. Umashankar, S. Chaudhuri, and A. Taflove, “Finite-difference time-domain formulation of an inverse scattering scheme for remote sensing of inhomogeneous lossy layered media: Part I-One dimensional case,” J. Electromagn. Waves Appl. 8, 489–508 (1994).

1993 (2)

H. Li and S. Yang, “Using Range Profiles as Feature Vectors to Identify Aerospace Objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
[CrossRef]

S. Adachi and T. Uno, “One-dimensional target profiling by electromagnetic backscattering,” J. Electromagn. Waves Appl. 7(3), 403–421 (1993).
[CrossRef]

Adachi, S.

S. Adachi and T. Uno, “One-dimensional target profiling by electromagnetic backscattering,” J. Electromagn. Waves Appl. 7(3), 403–421 (1993).
[CrossRef]

Bekman, Herman H. P. Th.

P. P. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, Frank J. M. van Putten, and R. H. M. A. Schleijpen, “Experimental Validation of Ship Identification with a Laser Range Profiler,” Laser Radar Technology and Applications XIII, vol. Proc. SPIE 6950, 1–12 (2008).

Bekman, Herman H. P. Th.

A. M. J. v. E. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, L. H. C. Frank, J. M. van Putten, and P. W. Pace, “Laser applications in the littoral: search lidar and ship identification,” Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II, vol. Proc. SPIE 7090, 1–9 (2008).

Castanon, D. A.

V. Galdi, D. A. Castanon, and L. B. Felsen, “Multifrequency reconstruction of moderately rough interfaces via quasi-ray Gaussian beams,” IEEE Trans. Geosci. Rem. Sens. 40(2), 453–460 (2002).
[CrossRef]

Chaudhuri, S.

K. Umashankar, S. Chaudhuri, and A. Taflove, “Finite-difference time-domain formulation of an inverse scattering scheme for remote sensing of inhomogeneous lossy layered media: Part I-One dimensional case,” J. Electromagn. Waves Appl. 8, 489–508 (1994).

Felsen, L. B.

V. Galdi, D. A. Castanon, and L. B. Felsen, “Multifrequency reconstruction of moderately rough interfaces via quasi-ray Gaussian beams,” IEEE Trans. Geosci. Rem. Sens. 40(2), 453–460 (2002).
[CrossRef]

Frank, L. H. C.

A. M. J. v. E. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, L. H. C. Frank, J. M. van Putten, and P. W. Pace, “Laser applications in the littoral: search lidar and ship identification,” Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II, vol. Proc. SPIE 7090, 1–9 (2008).

Galdi, V.

V. Galdi, D. A. Castanon, and L. B. Felsen, “Multifrequency reconstruction of moderately rough interfaces via quasi-ray Gaussian beams,” IEEE Trans. Geosci. Rem. Sens. 40(2), 453–460 (2002).
[CrossRef]

Gong, Y. J.

Y. H. Li, Z. S. Wu, and Y. J. Gong, “Ultra-short pulse laser one-dimensional range profile of a cone,” Nucl. Instr. and Meth. A (2010), doi:.

Harada, K.

K. Harada and A. Noguchi, “Reconstruction of two dimensional rough surface with Gaussian beam illumination,” IEICE Trans. Electron. 79, 1345–1349 (1996).

Johan, A. M. J. v. E.

A. M. J. v. E. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, L. H. C. Frank, J. M. van Putten, and P. W. Pace, “Laser applications in the littoral: search lidar and ship identification,” Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II, vol. Proc. SPIE 7090, 1–9 (2008).

Johan, P. P.

P. P. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, Frank J. M. van Putten, and R. H. M. A. Schleijpen, “Experimental Validation of Ship Identification with a Laser Range Profiler,” Laser Radar Technology and Applications XIII, vol. Proc. SPIE 6950, 1–12 (2008).

Johan, R. M. S.

R. M. S. Johan, C. van den Heuvel, and R. H. M. A. Schleijpen, “Identification of air and sea-surface targets with a laser range profiler,” Laser Radar Technology and Applications XIV, vol. Proceedings 7323, 1–9 (2009).

Li, H.

H. Li and S. Yang, “Using Range Profiles as Feature Vectors to Identify Aerospace Objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
[CrossRef]

Li, Y. H.

Y. H. Li, Z. S. Wu, and Y. J. Gong, “Ultra-short pulse laser one-dimensional range profile of a cone,” Nucl. Instr. and Meth. A (2010), doi:.

Noguchi, A.

K. Harada and A. Noguchi, “Reconstruction of two dimensional rough surface with Gaussian beam illumination,” IEICE Trans. Electron. 79, 1345–1349 (1996).

Pace, P. W.

A. M. J. v. E. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, L. H. C. Frank, J. M. van Putten, and P. W. Pace, “Laser applications in the littoral: search lidar and ship identification,” Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II, vol. Proc. SPIE 7090, 1–9 (2008).

Schleijpen, R. H. M. A.

R. M. S. Johan, C. van den Heuvel, and R. H. M. A. Schleijpen, “Identification of air and sea-surface targets with a laser range profiler,” Laser Radar Technology and Applications XIV, vol. Proceedings 7323, 1–9 (2009).

P. P. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, Frank J. M. van Putten, and R. H. M. A. Schleijpen, “Experimental Validation of Ship Identification with a Laser Range Profiler,” Laser Radar Technology and Applications XIII, vol. Proc. SPIE 6950, 1–12 (2008).

Taflove, A.

K. Umashankar, S. Chaudhuri, and A. Taflove, “Finite-difference time-domain formulation of an inverse scattering scheme for remote sensing of inhomogeneous lossy layered media: Part I-One dimensional case,” J. Electromagn. Waves Appl. 8, 489–508 (1994).

Umashankar, K.

K. Umashankar, S. Chaudhuri, and A. Taflove, “Finite-difference time-domain formulation of an inverse scattering scheme for remote sensing of inhomogeneous lossy layered media: Part I-One dimensional case,” J. Electromagn. Waves Appl. 8, 489–508 (1994).

Uno, T.

S. Adachi and T. Uno, “One-dimensional target profiling by electromagnetic backscattering,” J. Electromagn. Waves Appl. 7(3), 403–421 (1993).
[CrossRef]

van den Heuvel, C.

R. M. S. Johan, C. van den Heuvel, and R. H. M. A. Schleijpen, “Identification of air and sea-surface targets with a laser range profiler,” Laser Radar Technology and Applications XIV, vol. Proceedings 7323, 1–9 (2009).

A. M. J. v. E. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, L. H. C. Frank, J. M. van Putten, and P. W. Pace, “Laser applications in the littoral: search lidar and ship identification,” Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II, vol. Proc. SPIE 7090, 1–9 (2008).

P. P. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, Frank J. M. van Putten, and R. H. M. A. Schleijpen, “Experimental Validation of Ship Identification with a Laser Range Profiler,” Laser Radar Technology and Applications XIII, vol. Proc. SPIE 6950, 1–12 (2008).

van Putten, Frank J. M.

P. P. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, Frank J. M. van Putten, and R. H. M. A. Schleijpen, “Experimental Validation of Ship Identification with a Laser Range Profiler,” Laser Radar Technology and Applications XIII, vol. Proc. SPIE 6950, 1–12 (2008).

van Putten, J. M.

A. M. J. v. E. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, L. H. C. Frank, J. M. van Putten, and P. W. Pace, “Laser applications in the littoral: search lidar and ship identification,” Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II, vol. Proc. SPIE 7090, 1–9 (2008).

Wu, Z. S.

Y. H. Li, Z. S. Wu, and Y. J. Gong, “Ultra-short pulse laser one-dimensional range profile of a cone,” Nucl. Instr. and Meth. A (2010), doi:.

Yang, S.

H. Li and S. Yang, “Using Range Profiles as Feature Vectors to Identify Aerospace Objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
[CrossRef]

. SPIE (1)

P. P. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, Frank J. M. van Putten, and R. H. M. A. Schleijpen, “Experimental Validation of Ship Identification with a Laser Range Profiler,” Laser Radar Technology and Applications XIII, vol. Proc. SPIE 6950, 1–12 (2008).

IEEE Trans. Antenn. Propag. (1)

H. Li and S. Yang, “Using Range Profiles as Feature Vectors to Identify Aerospace Objects,” IEEE Trans. Antenn. Propag. 41(3), 261–268 (1993).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (1)

V. Galdi, D. A. Castanon, and L. B. Felsen, “Multifrequency reconstruction of moderately rough interfaces via quasi-ray Gaussian beams,” IEEE Trans. Geosci. Rem. Sens. 40(2), 453–460 (2002).
[CrossRef]

IEICE Trans. Electron. (1)

K. Harada and A. Noguchi, “Reconstruction of two dimensional rough surface with Gaussian beam illumination,” IEICE Trans. Electron. 79, 1345–1349 (1996).

J. Electromagn. Waves Appl. (2)

S. Adachi and T. Uno, “One-dimensional target profiling by electromagnetic backscattering,” J. Electromagn. Waves Appl. 7(3), 403–421 (1993).
[CrossRef]

K. Umashankar, S. Chaudhuri, and A. Taflove, “Finite-difference time-domain formulation of an inverse scattering scheme for remote sensing of inhomogeneous lossy layered media: Part I-One dimensional case,” J. Electromagn. Waves Appl. 8, 489–508 (1994).

Nucl. Instr. and Meth. A (1)

Y. H. Li, Z. S. Wu, and Y. J. Gong, “Ultra-short pulse laser one-dimensional range profile of a cone,” Nucl. Instr. and Meth. A (2010), doi:.

Proc. SPIE (1)

A. M. J. v. E. Johan, C. van den Heuvel, Herman H. P. Th. Bekman, L. H. C. Frank, J. M. van Putten, and P. W. Pace, “Laser applications in the littoral: search lidar and ship identification,” Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II, vol. Proc. SPIE 7090, 1–9 (2008).

Proceedings (1)

R. M. S. Johan, C. van den Heuvel, and R. H. M. A. Schleijpen, “Identification of air and sea-surface targets with a laser range profiler,” Laser Radar Technology and Applications XIV, vol. Proceedings 7323, 1–9 (2009).

Other (2)

L. G. Shirley, and G. R. Hallerman, Appications of Tunable Lasers to Laser Radar and 3D Imaging, (Lincoln Laboratory, 1996).

D. Mensa, High resolution radar imaging, (Artech House Norwood, Mass, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The laser pulse beam radiating the target schematic diagram.

Fig. 2
Fig. 2

LRPs of the plane with different ρr.

Fig. 3
Fig. 3

LRPs of sloped-plane about different incident pulsewidth and side length (a. θ = 60°, T 0 = 300ps; b. θ = 60°,l = 30mm).

Fig. 4
Fig. 4

LRPs of circular cone about different incident pulsewidth and height (a.T 0 = 300ps; b.h = 0.1m).

Fig. 5
Fig. 5

LRPs of circular cone about different incident angles.

Fig. 6
Fig. 6

Setup for LRP signal.

Fig. 7
Fig. 7

LRPs of the flat plane (a. ρr = 0.9; b. ρr = 0.6).

Fig. 8
Fig. 8

LRPs of sloped-plane (a.θ = 30°;b. θ = 60°).

Fig. 9
Fig. 9

LRPs of the circle cone (a. teflon; b. aluminium).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P s = P i 4 π R 0 2 × σ 4 π R 0 2 × π D 2 4 × T a 2 × η s y s t
u ( r , z ) = E 0 w 0 w ( z ) exp [ g 0 ( r ) w 2 ( z ) ]
P = | u ( r , z ) | 2 = E 0 2 ( w 0 ϕ z ) 2 exp [ 2 g 0 ( r ) ϕ 2 z 2 ]
P s ( t ) = d S P i T a 2 D 2 η s y s t 64 π R 0 4 w 0 2 ϕ 2 R 0 2 exp [ 2 g 0 ( r ) ϕ 2 R 0 2 ] σ 0 ( r )
P s ( t ) = R 1 Δ / 2 R 1 + Δ / 2 R P i T a 2 D 2 η s y s t 64 π R 0 4 w 0 2 ϕ 2 R 0 2 exp [ 2 g 0 ( r ) ϕ 2 R 0 2 ] σ 0 ( r ) d r d R
P s ( t ) = P i ( t 2 R 0 / c ) T a 2 D 2 η s y s t 64 π R 0 4 w 0 2 ϕ 2 R 0 2 4 ρ r S
P s ( t ) = z 0 Δ / 2 z 0 + Δ / 2 d z l cos θ P i ( t t ) T a 2 D 2 η s y s t 64 π R 0 4 w 0 2 ϕ 2 R 0 2 exp [ 2 z 2 cot 2 θ ϕ 2 R 0 2 ] σ 0 ( z )
P s ( t ) = z 0 Δ / 2 z 0 + Δ / 2 2 π ( h / 2 z ) tan 2 α   d z cos α P i ( t t ) T a 2 D 2 η s y s t 64 π R 0 4 w 0 2 ϕ 2 R 0 2 × exp ( 2 ( h / 2 z ) 2 tan 2 α ϕ 2 R 0 2 ) σ 0 ( z )
P ( t ) = z 0 Δ / 2 z 0 + Δ / 2 φ 0 φ 0 ( h / 2 z ) tan α cos α d φ   d z P i ( t t ) T a 2 D 2 η s y s t 64 π R 0 2 w 0 2 ϕ 2 R 0 2       × exp [ 2 ( | r | 2 | k ^ s r | 2 ) / ϕ 2 R 0 2 ] σ 0 ( r )

Metrics