Abstract

We present the first experimental demonstration of compatible single-sideband (compatible-SSB) modulated OFDM optical system at 11.1Gb/s data rate for long distance transmission over 675km uncompensated standard single-mode fiber. Compatible-SSB modulation employing a simple dual-drive Mach-Zehnder modulator (MZM) in the transmitter and direct-detection at the receiver provides an OFDM system implementation with reduced complexity. It does not require a guard-band between the carrier and the OFDM sideband and so makes full use of available digital-to-analog converter (DAC) bandwidth. We demonstrate digital pre-compensation applied in the transmitter to correct MZM nonlinear transfer function and to improve the system transmission performance. We show that optimum modulation index value decreases with increasing transmission distance. We have also investigated the impact of self-phase modulation (SPM) on the system performance, and show that a compatible-SSB modulated system is less vulnerable to SPM in comparison to the conventional offset-SSB modulation at the same data rate.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hui, B. Zhu, R. Huang, C. Allen, K. Demarest, and D. Richards, “Sub-carrier multiplexing for high-speed optical transmission,” J. Lightwave Technol. 20(3), 417–427 (2002).
    [CrossRef]
  2. R. Hui, “Multi-tributary OFDM optical transmitter using carrier-suppressed optical single-sideband modulation” Proceedings of Optical Fiber Communication Conference; OFC’2003, paper MF74, Atlanta, GA, March 2003.
  3. N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550nm 10Gb/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fibre using a directly modulated DFB,” Proceedings of Optical Fiber Communication Conference, OFC’2005, Paper OFP3.
  4. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006).
    [CrossRef] [PubMed]
  5. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [CrossRef]
  6. I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006).
    [CrossRef] [PubMed]
  7. P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [CrossRef]
  8. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
    [CrossRef]
  9. W.-R. Peng, X. Wu, K.-M. Feng, V. R. Arbab, B. Shamee, J.-Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11), 9099–9111 (2009).
    [CrossRef] [PubMed]
  10. B. J. C. Schmidt, A. J. Lowery, and L. B. Du, “Low Sample Rate Transmitter for Direct-Detection Optical OFDM” Proceedings of Optical Fiber Communication Conference, OFC 2009, San Diego, CA, paper OWM4.
  11. Z. Xu, M. O’Sullivan, and R. Hui, “OFDM system implementation using compatible SSB modulation with a dual-electrode MZM,” Opt. Lett. 35(8), 1221–1223 (2010).
    [CrossRef] [PubMed]
  12. J. McNicol, M. O'Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, “Electrical Domain Compensation of Optical Dispersion,” Proceedings of Optical Fiber Communication Conference, OFC’2005, Anaheim, CA, paper OThJ3.
  13. K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
    [CrossRef]
  14. R. Hui, and M. O’Sullivan, “Fiber Optic Measurement Techniques,” Academic Press, 2009.
  15. Y. Benlachtar, G. Gavioli, V. Mikhailov, and R. I. Killey, “Experimental investigation of SPM in long-haul direct-detection OFDM systems,” Opt. Express 16(20), 15477–15482 (2008).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (2)

Y. Benlachtar, G. Gavioli, V. Mikhailov, and R. I. Killey, “Experimental investigation of SPM in long-haul direct-detection OFDM systems,” Opt. Express 16(20), 15477–15482 (2008).
[CrossRef] [PubMed]

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

2006 (5)

2002 (1)

Allen, C.

Arbab, V. R.

Armstrong, J.

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Benlachtar, Y.

Breyer, F.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Bunge, C. A.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Chi, S.

Christen, L. C.

Demarest, K.

Djordjevic, I. B.

Essiambre, R.-J.

Feng, K.-M.

Gavioli, G.

Hardcastle, I.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Huang, R.

Hui, R.

Killey, R. I.

Lee, S. C. J.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Li, C.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Lowery, A. J.

Mikhailov, V.

O’Sullivan, M.

Z. Xu, M. O’Sullivan, and R. Hui, “OFDM system implementation using compatible SSB modulation with a dual-electrode MZM,” Opt. Lett. 35(8), 1221–1223 (2010).
[CrossRef] [PubMed]

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Peng, W.-R.

Petermann, K.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Randel, S.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Richards, D.

Roberts, K.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Schuster, M.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Shamee, B.

Shieh, W.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Spinnler, B.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Strawczynski, L.

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

Vasic, B.

Willner, A. E.

Winzer, P. J.

Wu, X.

Xu, Z.

Yang, J.-Y.

Zhu, B.

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic pre-compensation of optical nonlinearity,” IEEE Photon. Technol. Lett. 18(2), 403–405 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (4)

Opt. Lett. (1)

Other (5)

J. McNicol, M. O'Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, “Electrical Domain Compensation of Optical Dispersion,” Proceedings of Optical Fiber Communication Conference, OFC’2005, Anaheim, CA, paper OThJ3.

R. Hui, and M. O’Sullivan, “Fiber Optic Measurement Techniques,” Academic Press, 2009.

B. J. C. Schmidt, A. J. Lowery, and L. B. Du, “Low Sample Rate Transmitter for Direct-Detection Optical OFDM” Proceedings of Optical Fiber Communication Conference, OFC 2009, San Diego, CA, paper OWM4.

R. Hui, “Multi-tributary OFDM optical transmitter using carrier-suppressed optical single-sideband modulation” Proceedings of Optical Fiber Communication Conference; OFC’2003, paper MF74, Atlanta, GA, March 2003.

N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550nm 10Gb/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fibre using a directly modulated DFB,” Proceedings of Optical Fiber Communication Conference, OFC’2005, Paper OFP3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Spectra of offset-SSB modulation (a) optical single-sideband spectrum, and (b) electrical double-sideband spectrum after square law detection

Fig. 2
Fig. 2

Spectra of compatible-SSB modulation (a) optical single-sideband spectrum, and (b) electrical double-sideband spectrum after square law detection.

Fig. 3
Fig. 3

Optical spectra of compatible-SSB OFDM signal with small modulation index (a) and large modulation index (b).

Fig. 4
Fig. 4

Experimental setup

Fig. 5
Fig. 5

BER versus signal OSNR in a back-to-back system with and without nonlinear pre-compensation of MZM transfer function.

Fig. 6
Fig. 6

BER versus normalized bias voltage variation from the quadrature point for back-to-back (stars) and over three fiber spans (open circles). (a) measured and (b) numerical simulation

Fig. 7
Fig. 7

BER versus MZM modulation index. (a) experiment, and (b) simulation. Modulation index is defined as the rms driving signal voltage divided by V π.

Fig. 8
Fig. 8

Simulated optimum modulation index as the function of fiber length. Modulation index is defined as the rms driving signal voltage divided by V π.

Fig. 9
Fig. 9

BER versus OSNR for different transmission distances. (a) measured and (b) numerical simulation

Fig. 10
Fig. 10

Required OSNR versus fiber length.

Fig. 11
Fig. 11

Measured (solid squares) and simulated (open circles) BER versus launch power for compatible-SSB OFDM system after 675km fiber transmission

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

x ˜ ( t ) = A 0 [ 1 + k = 0 N 1 X ˜ k exp ( j 2 π k Δ f t ) ] e j ω 0 t
i ˜ ( t ) = η | A 0 | 2 | 1 + k = 0 N 1 X ˜ k exp ( j 2 π k Δ f t ) | 2
x ˜ ( t ) = A 0 exp [ k = 0 N 1 X ˜ k exp ( j 2 π k Δ f t ) ] e j ω 0 t
i ˜ ( t ) = η | A 0 | 2 exp { 2 k = 0 N 1 X ˜ k exp ( j 2 π k Δ f t ) }
n ( t ) = exp [ m ( t ) ] = A ( t ) e j Φ ( t )
A ( t ) = exp [ σ ( t ) ]
Φ ( t ) = H [ σ ( t ) ] = H { ln [ A ( t ) ] }
ϕ 1 ( t ) ϕ 2 ( t ) 2 exp [ j ϕ 1 ( t ) + ϕ 2 ( t ) 2 ] = A ( t ) e j Φ ( t )
ϕ 1 ( t ) = Φ ( t ) + A ( t )
ϕ 2 ( t ) = Φ ( t ) A ( t )
E 0 ( t ) = 2 E i sin [ Δ ϕ ( t ) + π 4 ] exp j [ ϕ 0 ( t ) π 4 ]
v 1 ( t ) = V π π { Φ ( t ) + sin 1 ( A ( t ) ) }
v 2 ( t ) = V π π { Φ ( t ) sin 1 ( A ( t ) ) + π / 2 }

Metrics