Abstract

The authors report on the passive mode-locking and cw lasing performance of Yb3+: Sc2SiO5 (Yb: SSO) in an x-fold cavity end-pumped by a 978 nm single emitter. The laser produced a maximum cw output power of 2.73 W with a slope efficiency of 70%. Passive mode-locking of Yb: SSO was initiated using a semiconductor saturable absorber mirror (SESAM) while dispersion compensation was introduced using a pair of SF10 prisms. The laser mode-locked at 1041 nm, 1060 nm and 1077 nm with near Fourier transformed limited pulse width of 145 fs, 144 fs and 125 fs, and average output power of 40 mW, 52 mW and 102 mW, respectively. To the authors’ knowledge, this is the first demonstration of femtosecond mode-locking of Yb: SSO.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
    [CrossRef] [PubMed]
  2. V. E. Kisel, S. V. Kurilchik, A. S. Yasukevich, S. V. Grigoriev, S. A. Smirnova, and N. V. Kuleshov, “Spectroscopy and femtosecond laser performance of Yb3+:YAlO3 crystal,” Opt. Lett. 33(19), 2194–2196 (2008).
    [CrossRef] [PubMed]
  3. Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34(21), 3316–3318 (2009).
    [CrossRef] [PubMed]
  4. P. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal-field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
    [CrossRef]
  5. L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
    [CrossRef]
  6. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+: LuSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
    [CrossRef] [PubMed]
  7. W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
    [CrossRef] [PubMed]
  8. C. Hönninger, G. Zhang, U. Keller, and A. Giesen, “Femtosecond Yb:YAG laser using semiconductor saturable absorbers,” Opt. Lett. 20(23), 2402 (1995).
    [CrossRef] [PubMed]
  9. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser,” Opt. Lett. 26(21), 1723–1725 (2001).
    [CrossRef]
  10. R. Gaumé, B. Viana, J. Derouet, and D. Vivien, “Spectroscopicproperties of Yb-doped scandium based compounds Yb: CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).
  11. W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
    [CrossRef]
  12. M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
    [CrossRef]
  13. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
    [CrossRef]
  14. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
    [CrossRef] [PubMed]
  15. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010).
    [CrossRef]
  16. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [CrossRef]
  17. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
    [CrossRef]

2010

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010).
[CrossRef]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

2009

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34(21), 3316–3318 (2009).
[CrossRef] [PubMed]

2008

V. E. Kisel, S. V. Kurilchik, A. S. Yasukevich, S. V. Grigoriev, S. A. Smirnova, and N. V. Kuleshov, “Spectroscopy and femtosecond laser performance of Yb3+:YAlO3 crystal,” Opt. Lett. 33(19), 2194–2196 (2008).
[CrossRef] [PubMed]

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

2007

2006

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+: LuSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

2005

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[CrossRef] [PubMed]

2004

2003

R. Gaumé, B. Viana, J. Derouet, and D. Vivien, “Spectroscopicproperties of Yb-doped scandium based compounds Yb: CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).

2001

P. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal-field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser,” Opt. Lett. 26(21), 1723–1725 (2001).
[CrossRef]

1995

1993

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[CrossRef]

Aguiló, M.

Antic-Fidancev, E.

P. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal-field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

Balembois, F.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Bao, Q.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

Bao, Q. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[CrossRef]

Derouet, J.

R. Gaumé, B. Viana, J. Derouet, and D. Vivien, “Spectroscopicproperties of Yb-doped scandium based compounds Yb: CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).

Díaz, F.

Ding, L.

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Druon, F.

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+: LuSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Erbert, G.

Ferrand, B.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Gaumé, R.

R. Gaumé, B. Viana, J. Derouet, and D. Vivien, “Spectroscopicproperties of Yb-doped scandium based compounds Yb: CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).

P. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal-field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

Georges, P.

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+: LuSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Giesen, A.

Griebner, U.

Grigoriev, S. V.

Hao, Q.

Haumesser, P. P.-H.

P. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal-field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

Hönninger, C.

Jacquemet, C.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Jacquemet, M.

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+: LuSiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Janel, N.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Keller, U.

Kisel, V. E.

Klopp, P.

Knize, R. J.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010).
[CrossRef]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[CrossRef]

Kuleshov, N. V.

Kurilchik, S. V.

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[CrossRef]

Li, D.

Li, L. J.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010).
[CrossRef]

Li, W.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[CrossRef] [PubMed]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Liang, X.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

Liu, H.

Loh, K. P.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Lu, W.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[CrossRef] [PubMed]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Massons, J.

Mateos, X.

Mourou, G.

Nees, J.

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Pan, H.

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[CrossRef]

Pelenc, D.

Petermann, K.

Peters, V.

Petit, J.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Petrov, V.

Rivier, S.

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Smirnova, S. A.

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[CrossRef]

Su, C. Y.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010).
[CrossRef]

Su, L.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[CrossRef] [PubMed]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Tan, W. D.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010).
[CrossRef]

Tang, D.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

Tang, D. Y.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Thibault, F.

Viana, B.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

R. Gaumé, B. Viana, J. Derouet, and D. Vivien, “Spectroscopicproperties of Yb-doped scandium based compounds Yb: CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).

P. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal-field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

Vivien, D.

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

R. Gaumé, B. Viana, J. Derouet, and D. Vivien, “Spectroscopicproperties of Yb-doped scandium based compounds Yb: CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).

P. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal-field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

Wang, J.

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Wei, Z.

Weyers, M.

Wu, F.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

Wu, K.

Xie, G. Q.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010).
[CrossRef]

Xu, C.

Xu, J.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[CrossRef] [PubMed]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Yan, C.

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Yao, B.

Yasukevich, A. S.

Yu, H.

Zaouter, Y.

Zeng, H.

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[CrossRef] [PubMed]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Zhai, H.

Zhang, G.

Zhang, H.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett. 34(21), 3316–3318 (2009).
[CrossRef] [PubMed]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Zhang, Y.

Zhang, Z.

Zhao, G.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[CrossRef] [PubMed]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

Zhao, L.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

Zheng, L.

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, “Diode-pumped Yb:GSO femtosecond laser,” Opt. Express 15(5), 2354–2359 (2007).
[CrossRef] [PubMed]

Zhou, B.

Zorn, M.

Zou, Y.

Adv. Funct. Mater.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[CrossRef]

Appl. Phys. B

L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, and X. Liang, “Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5,” Appl. Phys. B 91(3-4), 443–445 (2008).
[CrossRef]

M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb: LSO and Yb: YSO oxyorthosilicates crystals under high-power diode- pumping,” Appl. Phys. B 80(2), 171–176 (2005).
[CrossRef]

Appl. Phys. Lett.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010).
[CrossRef]

W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient diode-pumped Yb:Gd2SiO5 laser,” Appl. Phys. Lett. 88(22), 221117 (2006).
[CrossRef]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96(11), 111112 (2010).
[CrossRef]

IEEE J. Quantum Electron.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[CrossRef]

J. Phys. Condens. Matter

P. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, “Spectroscopic and crystal-field analysis of new Yb-doped laser materials,” J. Phys. Condens. Matter 13(23), 5427–5447 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

R. Gaumé, B. Viana, J. Derouet, and D. Vivien, “Spectroscopicproperties of Yb-doped scandium based compounds Yb: CaSc2O4, Yb: SrSc2O4 and Yb: Sc2SiO5,” Opt. Mater. 22(2), 107–115 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fluorescence spectrum of Yb: SSO.

Fig. 2
Fig. 2

A schematic of the experimental setup. F1 and F2 are a pair of plano-convex lens with 75mm focal length. M1, M2 and M3 have ROCs of −100 mm, −300 mm and −100 mm respectively. While M4. M5 and M6 have ROCs of ∞. L1, L2, L3, L4, L5 and L6 are 23.5 cm, 50 cm, 5 cm, 22 cm, 26.5 cm and 68 cm respectively. Lprism was 41.5 cm.

Fig. 3
Fig. 3

The cw laser emission of the Yb: SSO with an output coupler of 5% transmission. The insert shows the corresponding optical spectrum at the maximum output power.

Fig. 5
Fig. 5

The autocorrelation traces with their corresponding optical spectrums when Yb: SSO was mode-locked at (a) 1041 nm, (b) 1060 nm and (c) 1077 nm. The blue solid line in the autocorrelation traces are sech2 fits.

Metrics