Abstract

Pump relative intensity noise (RIN) has been recognized as a major source of noise in mode-locked lasers. The coupling of RIN from the pump to the output of a passively mode-locked fiber laser (PMFL) is systematically investigated using a pump modulation technique. It is found that the linear RIN coupling ratio from pump to PMFL is decreased with an increase in modulation frequency and is independent of modulation power. Moreover, the nonlinear RIN coupling from pump to PMFL is clearly demonstrated with a square wave modulated pump. The nonlinear RIN coupling ratio is noise power dependent. An exponential decay model based on the view of gain modulation is proposed and explains well the behavior of the nonlinear coupling phenomena.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
    [CrossRef] [PubMed]
  2. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [CrossRef] [PubMed]
  3. J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
    [CrossRef]
  4. D. Linde, “Characterization of the Noise in Continuously Operating Mode-Locked Lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [CrossRef]
  5. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
    [CrossRef]
  6. S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
    [CrossRef]
  7. R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
    [CrossRef]
  8. K. Wu, J. H. Wong, P. Shum, D. R. C. S. Lim, V. K. H. Wong, K. E. K. Lee, J. Chen, and E. D. Obraztsova, “Timing-jitter reduction of passively mode-locked fiber laser with a carbon nanotube saturable absorber by optimization of cavity loss,” Opt. Lett. 35(7), 1085–1087 (2010).
    [CrossRef] [PubMed]
  9. C. Ouyang, L. Chai, H. Zhao, M. Hu, Y. Song, and C. Wang, “Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser,” IEEE J. Quantum Electron. 45(10), 1284–1288 (2009).
    [CrossRef]
  10. N. Dogru and M. S. Ozyazici, “Intensity noise of mode-locked fiber grating external cavity semiconductor lasers,” Opt. Quantum Electron. 35(2), 169–178 (2003).
    [CrossRef]
  11. W. Lee, M. T. Choi, H. Izadpanah, and R. J. Delfyett, “Relative intensity noise characteristics of frequency stabilised grating-coupled modelocked semiconductor laser,” Electron. Lett. 42(20), 1156–1157 (2006).
    [CrossRef]
  12. N. R. Newbury and B. R. Washburn, “Theory of the frequency comb output from a femtosecond fiber laser,” IEEE J. Quantum Electron. 41(11), 1388–1402 (2005).
    [CrossRef]
  13. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
    [CrossRef]
  14. B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
    [CrossRef] [PubMed]
  15. I. L. Budunoğlu, C. Ulgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett. 34(16), 2516–2518 (2009).
    [CrossRef] [PubMed]
  16. J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
    [CrossRef] [PubMed]
  17. H. Tsuchida, “Correlation between amplitude and phase noise in a mode-locked Cr:LiSAF laser,” Opt. Lett. 23(21), 1686–1688 (1998).
    [CrossRef]
  18. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference,2003. OFC 2003, 2003), PD44–P41–43 vol.43.
  19. A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
    [CrossRef]
  20. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
    [CrossRef]
  21. T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
    [CrossRef]
  22. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
    [CrossRef]
  23. A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi 244(11), 4231–4235 (2007).
    [CrossRef]
  24. P. A. Obraztsov, A. A. Sirotkin, E. D. Obraztsova, Y. P. Svirko, and S. V. Garnov, “Carbon-nanotube-based saturable absorbers for near infrared solid state lasers,” Opt. Rev. 17(3), 290 (2010).
    [CrossRef]
  25. G. P. Agrawal, Applications of Nonlinear Fiber Optics, (2001).

2010

2009

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

C. Ouyang, L. Chai, H. Zhao, M. Hu, Y. Song, and C. Wang, “Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser,” IEEE J. Quantum Electron. 45(10), 1284–1288 (2009).
[CrossRef]

I. L. Budunoğlu, C. Ulgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett. 34(16), 2516–2518 (2009).
[CrossRef] [PubMed]

2008

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33(9), 959–961 (2008).
[CrossRef] [PubMed]

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[CrossRef]

2007

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[CrossRef] [PubMed]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi 244(11), 4231–4235 (2007).
[CrossRef]

2006

W. Lee, M. T. Choi, H. Izadpanah, and R. J. Delfyett, “Relative intensity noise characteristics of frequency stabilised grating-coupled modelocked semiconductor laser,” Electron. Lett. 42(20), 1156–1157 (2006).
[CrossRef]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

2005

N. R. Newbury and B. R. Washburn, “Theory of the frequency comb output from a femtosecond fiber laser,” IEEE J. Quantum Electron. 41(11), 1388–1402 (2005).
[CrossRef]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[CrossRef] [PubMed]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

2004

R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[CrossRef]

2003

N. Dogru and M. S. Ozyazici, “Intensity noise of mode-locked fiber grating external cavity semiconductor lasers,” Opt. Quantum Electron. 35(2), 169–178 (2003).
[CrossRef]

1998

1997

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[CrossRef]

1993

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

1986

D. Linde, “Characterization of the Noise in Continuously Operating Mode-Locked Lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Bonaccorso, F.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Budunoglu, I. L.

Chai, L.

C. Ouyang, L. Chai, H. Zhao, M. Hu, Y. Song, and C. Wang, “Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser,” IEEE J. Quantum Electron. 45(10), 1284–1288 (2009).
[CrossRef]

Chen, J.

Chernov, A. I.

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi 244(11), 4231–4235 (2007).
[CrossRef]

Choi, M. T.

W. Lee, M. T. Choi, H. Izadpanah, and R. J. Delfyett, “Relative intensity noise characteristics of frequency stabilised grating-coupled modelocked semiconductor laser,” Electron. Lett. 42(20), 1156–1157 (2006).
[CrossRef]

Cox, J. A.

J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[CrossRef]

Delfyett, R. J.

W. Lee, M. T. Choi, H. Izadpanah, and R. J. Delfyett, “Relative intensity noise characteristics of frequency stabilised grating-coupled modelocked semiconductor laser,” Electron. Lett. 42(20), 1156–1157 (2006).
[CrossRef]

Dianov, E. M.

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

Dogru, N.

N. Dogru and M. S. Ozyazici, “Intensity noise of mode-locked fiber grating external cavity semiconductor lasers,” Opt. Quantum Electron. 35(2), 169–178 (2003).
[CrossRef]

Fendel, P.

Ferrari, A. C.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Garnov, S. V.

P. A. Obraztsov, A. A. Sirotkin, E. D. Obraztsova, Y. P. Svirko, and S. V. Garnov, “Carbon-nanotube-based saturable absorbers for near infrared solid state lasers,” Opt. Rev. 17(3), 290 (2010).
[CrossRef]

Hänsch, T. W.

Hasan, T.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Haus, H. A.

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

Holzwarth, R.

Hsu, K.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Hu, M.

C. Ouyang, L. Chai, H. Zhao, M. Hu, Y. Song, and C. Wang, “Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser,” IEEE J. Quantum Electron. 45(10), 1284–1288 (2009).
[CrossRef]

Ilday, F. Ö.

Inoue, Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Ippen, E. P.

Izadpanah, H.

W. Lee, M. T. Choi, H. Izadpanah, and R. J. Delfyett, “Relative intensity noise characteristics of frequency stabilised grating-coupled modelocked semiconductor laser,” Electron. Lett. 42(20), 1156–1157 (2006).
[CrossRef]

Jablonski, M.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Kartner, F. X.

J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[CrossRef]

Kärtner, F. X.

Kelleher, E. J. R.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Kim, J.

J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[CrossRef]

Konov, V. I.

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

Konyashchenko, A. V.

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

Kotake, T.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Kryukov, P. G.

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

Lee, K. E. K.

Lee, W.

W. Lee, M. T. Choi, H. Izadpanah, and R. J. Delfyett, “Relative intensity noise characteristics of frequency stabilised grating-coupled modelocked semiconductor laser,” Electron. Lett. 42(20), 1156–1157 (2006).
[CrossRef]

Lim, D. R. C. S.

Linde, D.

D. Linde, “Characterization of the Noise in Continuously Operating Mode-Locked Lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Lobach, A. S.

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi 244(11), 4231–4235 (2007).
[CrossRef]

McFerran, J. J.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

Namiki, S.

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[CrossRef]

Newbury, N. R.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

N. R. Newbury and B. R. Washburn, “Theory of the frequency comb output from a femtosecond fiber laser,” IEEE J. Quantum Electron. 41(11), 1388–1402 (2005).
[CrossRef]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[CrossRef] [PubMed]

Obraztsov, P. A.

P. A. Obraztsov, A. A. Sirotkin, E. D. Obraztsova, Y. P. Svirko, and S. V. Garnov, “Carbon-nanotube-based saturable absorbers for near infrared solid state lasers,” Opt. Rev. 17(3), 290 (2010).
[CrossRef]

Obraztsova, E. D.

P. A. Obraztsov, A. A. Sirotkin, E. D. Obraztsova, Y. P. Svirko, and S. V. Garnov, “Carbon-nanotube-based saturable absorbers for near infrared solid state lasers,” Opt. Rev. 17(3), 290 (2010).
[CrossRef]

K. Wu, J. H. Wong, P. Shum, D. R. C. S. Lim, V. K. H. Wong, K. E. K. Lee, J. Chen, and E. D. Obraztsova, “Timing-jitter reduction of passively mode-locked fiber laser with a carbon nanotube saturable absorber by optimization of cavity loss,” Opt. Lett. 35(7), 1085–1087 (2010).
[CrossRef] [PubMed]

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi 244(11), 4231–4235 (2007).
[CrossRef]

Oktem, B.

Ouyang, C.

C. Ouyang, L. Chai, H. Zhao, M. Hu, Y. Song, and C. Wang, “Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser,” IEEE J. Quantum Electron. 45(10), 1284–1288 (2009).
[CrossRef]

Ozyazici, M. S.

N. Dogru and M. S. Ozyazici, “Intensity noise of mode-locked fiber grating external cavity semiconductor lasers,” Opt. Quantum Electron. 35(2), 169–178 (2003).
[CrossRef]

Paschotta, R.

R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[CrossRef]

Popov, S. V.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Rozhin, A. G.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Set, S. Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Shum, P.

Sickler, J. W.

Sirotkin, A. A.

P. A. Obraztsov, A. A. Sirotkin, E. D. Obraztsova, Y. P. Svirko, and S. V. Garnov, “Carbon-nanotube-based saturable absorbers for near infrared solid state lasers,” Opt. Rev. 17(3), 290 (2010).
[CrossRef]

Song, Y.

C. Ouyang, L. Chai, H. Zhao, M. Hu, Y. Song, and C. Wang, “Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser,” IEEE J. Quantum Electron. 45(10), 1284–1288 (2009).
[CrossRef]

Sun, Z.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Sun, Z. P.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Svirko, Y. P.

P. A. Obraztsov, A. A. Sirotkin, E. D. Obraztsova, Y. P. Svirko, and S. V. Garnov, “Carbon-nanotube-based saturable absorbers for near infrared solid state lasers,” Opt. Rev. 17(3), 290 (2010).
[CrossRef]

Swann, W. C.

Tan, P. H.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Tanaka, D.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Tausenev, A. V.

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

Taylor, J. R.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Travers, J. C.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Tsuchida, H.

Ulgüdür, C.

Valley, G. C.

Wang, C.

C. Ouyang, L. Chai, H. Zhao, M. Hu, Y. Song, and C. Wang, “Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser,” IEEE J. Quantum Electron. 45(10), 1284–1288 (2009).
[CrossRef]

Wang, F. Q.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Washburn, B. R.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

N. R. Newbury and B. R. Washburn, “Theory of the frequency comb output from a femtosecond fiber laser,” IEEE J. Quantum Electron. 41(11), 1388–1402 (2005).
[CrossRef]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[CrossRef] [PubMed]

Wilken, T.

Wong, J. H.

Wong, V. K. H.

Wu, K.

Yaguchi, H.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Yamashita, S.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Zhao, H.

C. Ouyang, L. Chai, H. Zhao, M. Hu, Y. Song, and C. Wang, “Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser,” IEEE J. Quantum Electron. 45(10), 1284–1288 (2009).
[CrossRef]

Adv. Mater.

T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009).
[CrossRef]

Appl. Phys. B

D. Linde, “Characterization of the Noise in Continuously Operating Mode-Locked Lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[CrossRef]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl. Phys. B 86(2), 219–227 (2007).
[CrossRef]

Appl. Phys. Lett.

A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G. Kryukov, A. V. Konyashchenko, and E. M. Dianov, “177 fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes,” Appl. Phys. Lett. 92(17), 171113 (2008).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95(11), 111108 (2009).
[CrossRef]

Electron. Lett.

W. Lee, M. T. Choi, H. Izadpanah, and R. J. Delfyett, “Relative intensity noise characteristics of frequency stabilised grating-coupled modelocked semiconductor laser,” Electron. Lett. 42(20), 1156–1157 (2006).
[CrossRef]

IEEE J. Quantum Electron.

N. R. Newbury and B. R. Washburn, “Theory of the frequency comb output from a femtosecond fiber laser,” IEEE J. Quantum Electron. 41(11), 1388–1402 (2005).
[CrossRef]

C. Ouyang, L. Chai, H. Zhao, M. Hu, Y. Song, and C. Wang, “Position Effect of Spectral Filter on Properties of Highly Chirped Pulses in an All-Normal-Dispersion Fiber Laser,” IEEE J. Quantum Electron. 45(10), 1284–1288 (2009).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[CrossRef]

S. Namiki and H. A. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33(5), 649–659 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17(4), 750–752 (2005).
[CrossRef]

Nat. Photonics

J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

N. Dogru and M. S. Ozyazici, “Intensity noise of mode-locked fiber grating external cavity semiconductor lasers,” Opt. Quantum Electron. 35(2), 169–178 (2003).
[CrossRef]

Opt. Rev.

P. A. Obraztsov, A. A. Sirotkin, E. D. Obraztsova, Y. P. Svirko, and S. V. Garnov, “Carbon-nanotube-based saturable absorbers for near infrared solid state lasers,” Opt. Rev. 17(3), 290 (2010).
[CrossRef]

Phys. Status Solidi

A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi 244(11), 4231–4235 (2007).
[CrossRef]

Other

G. P. Agrawal, Applications of Nonlinear Fiber Optics, (2001).

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference,2003. OFC 2003, 2003), PD44–P41–43 vol.43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of passively mode-locked fiber ring laser and pump modulation.

Fig. 2
Fig. 2

(a) RIN spectra of the pump and the laser when different modulation frequencies are applied to the pump; (b) Total RIN coupling ratio from pump to laser for different modulation frequencies and their harmonics

Fig. 3
Fig. 3

(a) Total RIN coupling ratio from pump to laser at 5 kHz modulation for different modulation currents; (b) Linear RIN coupling ratio from pump to laser for different modulation frequencies

Fig. 4
Fig. 4

(a) RIN spectra of pump and laser when square wave modulation is applied to the pump; (b) Total RIN coupling ratio from pump to laser with respect to different modulation current in a square wave modulation

Fig. 5
Fig. 5

(a) Residual RIN contributed from nonlinear coupling. Markers are experimental data; solid lines are linear fit; (b) Fitting of exponential decay model (dashed lines) of total RIN coupling ratio from pump to laser based on Eq. (2) and Eq. (3), and the experimental data (solid lines) of coupling ratio

Fig. 6
Fig. 6

Coefficients of each frequency component based on Eq. (5) at different modulation depth ε. The vertical axis is plotted in logarithm scale. The coefficients show very good linearity which verifies the validity of the exponential decay model we have proposed in Eq. (3).

Fig. 7
Fig. 7

RIN spectra of pump and NPR laser when square wave modulation is applied to the pump. The offset frequency range is set from 1kHz to 30kHz because the modulation depth is very small and laser RIN noise spurs after 30kHz are too small to be characterized.

Tables (1)

Tables Icon

Table 1 Values of η and α under different modulation waveform and modulation depth

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R I N l a s e r ( f ) = ε 1 + ( f / f k n e e ) 2 R I N p u m p ( f )
R I N l ( k f mod ) = C T o t R I N p ( k f mod ) = C L i n R I N p ( k f mod ) + T N o n l i n ( k ) R I N p ( f mod )
T N o n l i n ( k ) = η e α k
G = exp ( g ) = exp ( g 0 + Δ g ) = G 0 ( 1 + Δ G )
Δ G = exp ( ε sin ω 0 t ) 1 = ε sin ω 0 t + 1 2 ( ε sin ω 0 t ) 2 + 1 6 ( ε sin ω 0 t ) 3 + ...

Metrics