Abstract

Using a low-cost microchip laser and a long photonic crystal fiber taper, we report a supercontinuum source with a very efficient visible conversion, especially in the blue region (around 420 nm). About 30 % of the total average output power is located in the 350–600 nm band, which is of primary importance in a number of biophotonics applications such as flow cytometry or fluorescence imaging microscopy for instance. We successfully demonstrate the use of this visible-enhanced source for a three-color imaging of HeLa cells in wide-field microscopy.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See e. g. www.nktphotonics.com or www.fianium.com or www.leukos-systems.com
  2. www.leica-microsystems.com
  3. P. Blandin, S. Lévêque-Fort, S. Lécart, J. C. Cossec, M.-C. Potier, Z. Lenkei, F. Druon, and P. Georges, “Timegated total internal reflection fluorescence microscopy with a supercontinuum excitation source,” Appl. Opt. 48, 553–559 (2009).
    [CrossRef] [PubMed]
  4. W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum White Light Lasers for Flow Cytometry,” Cytometry A 75A, 450–459 (2009).
    [CrossRef]
  5. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
    [CrossRef] [PubMed]
  6. A. V. Gorbach, and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [CrossRef]
  7. J. M. Stone, and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
    [CrossRef] [PubMed]
  8. A. Kudlinski, and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33, 2407–2409 (2008).
    [CrossRef] [PubMed]
  9. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30, 3132–3134 (2005).
    [CrossRef] [PubMed]
  10. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
    [CrossRef] [PubMed]
  11. C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, “Enhanced visible continuum generation from a microchip 1064 nm laser,” Opt. Express 14, 6188–6193 (2006).
    [CrossRef] [PubMed]
  12. E. Rikknen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006).
    [CrossRef]
  13. C. Xiong, Z. Chen, and W. J. Wadsworth, “Dual-Wavelength-Pumped Supercontinuum Generation in an All-Fiber Device,” J. Lightwave Technol. 27, 1638–1643 (2009).
    [CrossRef]
  14. J. C. Travers, S. V. Popov, and J. R. Taylor, “Trapping of Dispersive Waves by Solitons in Long Lengths of Tapered PCF,” in Conference on Lasers and Electro-Optics, paper CthGG2 (Optical Society of America, San Jose, CA, USA, 2008).

2009 (3)

2008 (2)

2007 (1)

A. V. Gorbach, and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

Birks, T. A.

Blandin, P.

Buchter, S. C.

Chen, Z.

Cossec, J. C.

Druon, F.

Genty, G.

George, A. K.

Georges, P.

Gorbach, A. V.

A. V. Gorbach, and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

Hansen, K. P.

Kaivola, M.

Kimmelma, O.

Knight, J. C.

Kudlinski, A.

Lécart, S.

Lehtonen, M.

Lenkei, Z.

Leon-Saval, S. G.

Lévêque-Fort, S.

Ludvigsen, H.

Mussot, A.

Popov, S. V.

Potier, M.-C.

Rikknen, E.

Rulkov, A. B.

Skryabin, D. V.

A. V. Gorbach, and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

Stone, J. M.

Subach, F. V.

W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum White Light Lasers for Flow Cytometry,” Cytometry A 75A, 450–459 (2009).
[CrossRef]

Taylor, J. R.

Telford, W. G.

W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum White Light Lasers for Flow Cytometry,” Cytometry A 75A, 450–459 (2009).
[CrossRef]

Travers, J. C.

Verkhusha, V. V.

W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum White Light Lasers for Flow Cytometry,” Cytometry A 75A, 450–459 (2009).
[CrossRef]

Wadsworth, W. J.

Witkowska, A.

Xiong, C.

Appl. Opt. (1)

Cytometry A (1)

W. G. Telford, F. V. Subach, and V. V. Verkhusha, “Supercontinuum White Light Lasers for Flow Cytometry,” Cytometry A 75A, 450–459 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

A. V. Gorbach, and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Other (3)

J. C. Travers, S. V. Popov, and J. R. Taylor, “Trapping of Dispersive Waves by Solitons in Long Lengths of Tapered PCF,” in Conference on Lasers and Electro-Optics, paper CthGG2 (Optical Society of America, San Jose, CA, USA, 2008).

See e. g. www.nktphotonics.com or www.fianium.com or www.leukos-systems.com

www.leica-microsystems.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images of the PCF taper input (a) and output (b) faces, with the same scale. (c) Evolution of the outer diameter versus fiber length measured during the drawing process.

Fig. 2.
Fig. 2.

(a) Measured group delay (markers) and polynomial fit of the experimental data (lines) at the input and output of the PCF taper. Full circles and solid lines corresponds to the taper input; open circles and dashed lines corresponds to the taper output. (b) GVD curves deduced from the group delay measurements.

Fig. 3.
Fig. 3.

(a) Profiles of the fiber sections under investigation and (b) corresponding measured. Inset: far-field supercontinuum mode over the whole visible spectral range. (c) Near-field mode profiles measured with 10 nm bandpass filters.

Fig. 4.
Fig. 4.

(a) Nuclei of HeLa cells stained in blue DAPI, (b) Rab6 proteins labeled with green GFP and (c) cells cytosqueleton (F-actin filaments) colored with red Rhodamin Phalloidin. (d) Merge image obtained by a superimposition of the three colored images.

Metrics