Abstract

A hybrid impulse radio ultra-wideband (IR-UWB) communication system in which UWB pulses are transmitted over long distances through free space optical (FSO) links is proposed. FSO channels are characterized by random fluctuations in the received light intensity mainly due to the atmospheric turbulence. For this reason, theoretical detection error probability analysis is presented for the proposed system for a time-hopping pulse-position modulated (TH-PPM) UWB signal model under weak, moderate and strong turbulence conditions. For the optical system output distributed over radio frequency UWB channels, composite error analysis is also presented. The theoretical derivations are verified via simulation results, which indicate a computationally and spectrally efficient UWB-over-FSO system.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. P. Lin and J. Y. Chen, “Implementation of a new ultra-wideband impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
    [CrossRef]
  2. F. Zeng and J. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
    [CrossRef]
  3. M. Jazayerifar, B. Cabon, and J. A. Salehi, “Transmision of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber,” J. Lightwave Technol. 26(15), 2594–2603 (2008).
    [CrossRef]
  4. F. Zeng and J. Yao, “Ultra-wideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
    [CrossRef]
  5. P. C. Peng, W. R. Peng, J. H. Lin, W. P. Lin, and S. Chi, “Generation of wavelength- tunable optical pulses using EDFA as external-injection light source and amplifier for Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 16(11), 2553–2555 (2004).
    [CrossRef]
  6. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
    [CrossRef]
  7. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm. 6(8), 2813–2819 (2007).
    [CrossRef]
  8. M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).
  9. S. Lin, and D. J. Costello, Error Control Coding, 2nd ed. (Pearson Prentice Hall, 2004).
  10. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of free-space optical systems in Gamma-Gamma fading,” in Global Telecommunications Conference 2008. GLOBECOM `08 (IEEE, 2008), 1–6.
  11. The Wolfram Function Site, (2004), http://functions.wolfram.com/ .
  12. S. G. Wilson, M. B. Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Sel. Areas Comm. 23(9), 1901–1910 (2005).
    [CrossRef]
  13. S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “An empirical indoor path loss model for ultra-wideband channels,” J. Commun. Network 5, 303–308 (2003).

2008

M. Jazayerifar, B. Cabon, and J. A. Salehi, “Transmision of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber,” J. Lightwave Technol. 26(15), 2594–2603 (2008).
[CrossRef]

2007

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm. 6(8), 2813–2819 (2007).
[CrossRef]

2006

F. Zeng and J. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. Yao, “Ultra-wideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

2005

W. P. Lin and J. Y. Chen, “Implementation of a new ultra-wideband impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
[CrossRef]

S. G. Wilson, M. B. Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Sel. Areas Comm. 23(9), 1901–1910 (2005).
[CrossRef]

2004

P. C. Peng, W. R. Peng, J. H. Lin, W. P. Lin, and S. Chi, “Generation of wavelength- tunable optical pulses using EDFA as external-injection light source and amplifier for Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 16(11), 2553–2555 (2004).
[CrossRef]

2003

S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “An empirical indoor path loss model for ultra-wideband channels,” J. Commun. Network 5, 303–308 (2003).

2002

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[CrossRef]

Baedke, M.

S. G. Wilson, M. B. Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Sel. Areas Comm. 23(9), 1901–1910 (2005).
[CrossRef]

Cabon, B.

M. Jazayerifar, B. Cabon, and J. A. Salehi, “Transmision of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber,” J. Lightwave Technol. 26(15), 2594–2603 (2008).
[CrossRef]

Cao, Q.

S. G. Wilson, M. B. Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Sel. Areas Comm. 23(9), 1901–1910 (2005).
[CrossRef]

Chen, J. Y.

W. P. Lin and J. Y. Chen, “Implementation of a new ultra-wideband impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
[CrossRef]

Chi, S.

P. C. Peng, W. R. Peng, J. H. Lin, W. P. Lin, and S. Chi, “Generation of wavelength- tunable optical pulses using EDFA as external-injection light source and amplifier for Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 16(11), 2553–2555 (2004).
[CrossRef]

Ghassemzadeh, S. S.

S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “An empirical indoor path loss model for ultra-wideband channels,” J. Commun. Network 5, 303–308 (2003).

Greenstein, L. J.

S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “An empirical indoor path loss model for ultra-wideband channels,” J. Commun. Network 5, 303–308 (2003).

Jazayerifar, M.

M. Jazayerifar, B. Cabon, and J. A. Salehi, “Transmision of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber,” J. Lightwave Technol. 26(15), 2594–2603 (2008).
[CrossRef]

Kahn, J. M.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[CrossRef]

Kavcic, A.

S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “An empirical indoor path loss model for ultra-wideband channels,” J. Commun. Network 5, 303–308 (2003).

Kavehrad, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm. 6(8), 2813–2819 (2007).
[CrossRef]

Lin, J. H.

P. C. Peng, W. R. Peng, J. H. Lin, W. P. Lin, and S. Chi, “Generation of wavelength- tunable optical pulses using EDFA as external-injection light source and amplifier for Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 16(11), 2553–2555 (2004).
[CrossRef]

Lin, W. P.

W. P. Lin and J. Y. Chen, “Implementation of a new ultra-wideband impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
[CrossRef]

P. C. Peng, W. R. Peng, J. H. Lin, W. P. Lin, and S. Chi, “Generation of wavelength- tunable optical pulses using EDFA as external-injection light source and amplifier for Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 16(11), 2553–2555 (2004).
[CrossRef]

Navidpour, S. M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm. 6(8), 2813–2819 (2007).
[CrossRef]

Pearce, M. B.

S. G. Wilson, M. B. Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Sel. Areas Comm. 23(9), 1901–1910 (2005).
[CrossRef]

Peng, P. C.

P. C. Peng, W. R. Peng, J. H. Lin, W. P. Lin, and S. Chi, “Generation of wavelength- tunable optical pulses using EDFA as external-injection light source and amplifier for Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 16(11), 2553–2555 (2004).
[CrossRef]

Peng, W. R.

P. C. Peng, W. R. Peng, J. H. Lin, W. P. Lin, and S. Chi, “Generation of wavelength- tunable optical pulses using EDFA as external-injection light source and amplifier for Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 16(11), 2553–2555 (2004).
[CrossRef]

Salehi, J. A.

M. Jazayerifar, B. Cabon, and J. A. Salehi, “Transmision of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber,” J. Lightwave Technol. 26(15), 2594–2603 (2008).
[CrossRef]

Sveinsson, T.

S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “An empirical indoor path loss model for ultra-wideband channels,” J. Commun. Network 5, 303–308 (2003).

Tarokh, V.

S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “An empirical indoor path loss model for ultra-wideband channels,” J. Commun. Network 5, 303–308 (2003).

Uysal, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm. 6(8), 2813–2819 (2007).
[CrossRef]

Wilson, S. G.

S. G. Wilson, M. B. Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Sel. Areas Comm. 23(9), 1901–1910 (2005).
[CrossRef]

Yao, J.

F. Zeng and J. Yao, “Ultra-wideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

Zeng, F.

F. Zeng and J. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. Yao, “Ultra-wideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Zhu, X.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[CrossRef]

IEEE J. Sel. Areas Comm.

S. G. Wilson, M. B. Pearce, Q. Cao, and M. Baedke, “Optical repetition MIMO transmission with multipulse PPM,” IEEE J. Sel. Areas Comm. 23(9), 1901–1910 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

W. P. Lin and J. Y. Chen, “Implementation of a new ultra-wideband impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. Yao, “Ultra-wideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

P. C. Peng, W. R. Peng, J. H. Lin, W. P. Lin, and S. Chi, “Generation of wavelength- tunable optical pulses using EDFA as external-injection light source and amplifier for Fabry-Pérot laser diode,” IEEE Photon. Technol. Lett. 16(11), 2553–2555 (2004).
[CrossRef]

IEEE Trans. Commun.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[CrossRef]

IEEE Trans. Wirel. Comm.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wirel. Comm. 6(8), 2813–2819 (2007).
[CrossRef]

J. Commun. Network

S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “An empirical indoor path loss model for ultra-wideband channels,” J. Commun. Network 5, 303–308 (2003).

J. Lightwave Technol.

M. Jazayerifar, B. Cabon, and J. A. Salehi, “Transmision of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber,” J. Lightwave Technol. 26(15), 2594–2603 (2008).
[CrossRef]

Other

M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).

S. Lin, and D. J. Costello, Error Control Coding, 2nd ed. (Pearson Prentice Hall, 2004).

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of free-space optical systems in Gamma-Gamma fading,” in Global Telecommunications Conference 2008. GLOBECOM `08 (IEEE, 2008), 1–6.

The Wolfram Function Site, (2004), http://functions.wolfram.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System model of the proposed communication link over FSO.

Fig. 2
Fig. 2

Comparison of the simulated and theoretical DEP’s for weak, moderate and strong turbulence fading conditions.

Fig. 3
Fig. 3

FSO + RF UWB system performance of a link distance of 2 km. For weak, moderate and strong FSO turbulences, channel parameters are taken as σX = 0.3, (α,β) = (4.16,2.21) and E[I] = 1, respectively. For RF environment, CM1 is assumed.

Fig. 4
Fig. 4

(27,31)8 convolutional coded FSO + RF UWB system performance over 2 km.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

x FSO ( t ) = E p n = 1 j = 0 N s 1 p ( t n T d j T f c j T c d n T p ) ,
r F S O ( t ) = ( η I ) x F S O ( t ) + n ( t ) = ( η I ) E p n = 1 j = 0 N s 1 p ( t n T d j T f c j T c d n T p ) + n ( t ) ,
x r ( t ) = 1 N s n = 1 j = 0 N s 1 p ( t c j T c ) p ( t c j T c T p ) ,
y FSO ( k T d ) = ( k 1 ) T d k T d r FSO ( t ) x r ( t ) d t = ± η I N s E p + ν k ,
x RF ( t ) = E F n = 1 j = 0 N s 1 q ( t n T d j T f c j T c d n T p ) ,
h RF ( t ) = κ j = 1 N k = 1 K ( j ) α j k δ ( t T j τ j k ) ,
j = 1 N k = 1 K ( j ) β j k 2 = 1.
g 0 = 10 ln G ln 10 σ g 2 ln 10 20 ,
r RF ( t )  =  x RF ( t ) h RF ( t ) + n ( t )           =  κ E F n = 1 j = 0 N s 1 k = 1 N j = 1 K ( j ) q ( t n T d j T f c j T c d n T p T j τ j k ) + n ( t ) .
P e ( γ F S O , γ R F ) = P F S O ( γ F S O ) [ 1 P R F ( γ R F ) ] + [ 1 P F S O ( γ F S O ) ] P R F ( γ R F ) ,
P R F ( γ R F , κ ) = 1 2 erfc ( γ R F κ 2 2 ) ,
P R F ( γ R F ) = 0 1 2 erfc ( γ R F κ 2 2 ) 20 κ ln 10 2 π σ g 2 exp ( ( 20 log 10 κ g 0 ) 2 2 σ g 2 ) d κ .
g ( y ) e y 2 d y i = 1 n ω i g ( y i ) ,
P R F ( γ R F ) = 1 2 π i = 1 N ω i erfc ( γ R F 10 ( y i 2 σ g 2 + g 0 ) / 10 2 ) .
P F S O ( γ F S O , I ) = 0.5 erfc ( γ F S O ( η I ) 2 / 2 ) ,
P F S O ( γ F S O ) = E I [ P e ( γ F S O , I ) ] = 0 P e ( γ F S O , I ) f I ( I ) d I .
P F S O c o d e d ( γ F S O ) N b [ 4 P F S O ( γ F S O ) ( 1 P F S O ( γ F S O ) ) ] d f r e e 2 ,
f I ( I ) = 1 2 I 2 π σ X 2 exp ( ( ln ( I / I 0 ) ) 2 8 σ X 2 ) , I 0.
σ S I 2 = E [ I 2 ] / E [ I ] 2 1 = exp ( σ X 2 ) 1.
P F S O ( γ F S O ) = 0 1 2 e r f c ( γ F S O ( η I ) 2 / 2 ) 1 2 I 2 π σ X 2 exp ( ( ln ( I / I 0 ) ) 2 8 σ X 2 ) d I ,
P F S O ( γ F S O ) = 1 2 π e r f c ( γ F S O ( η I 0 e y 8 σ X 2 ) 2 / 2 ) e y 2 d y ,
P F S O ( γ F S O ) = 1 2 π i = 1 n ω i e r f c ( γ F S O ( η I 0 e y i 8 σ x 2 ) 2 2 ) .
f I ( I ; α , β ) = 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) I ( α + β ) / 2 1 K α β ( 2 α β I ) ,
α = [ exp ( 0.49 χ 2 ( 1 + 1.11 χ 12 / 5 ) 7 / 6 ) 1 ] 1 ,   β = [ exp ( 0.51 χ 2 ( 1 + 0.69 χ 12 / 5 ) 5 / 6 ) 1 ] 1 ,
P F S O ( γ F S O ) = 0 1 2 e r f c ( γ ( η I ) F S O 2 / 2 ) 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) I ( α + β ) 2 1 K α β ( 2 α β I ) d I .
P F S O ( γ F S O ) = 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) 0 I ( α + β ) / 2 1 1 2 π G 1 , 2 2 , 0 [ γ F S O ( η I ) 2 2 | 1 0 , 0.5 ] 1 2 G 0 , 2 2 , 0 [ α β I | ( α β ) 2 , ( β α ) 2 ] d I
P F S O ( γ F S O ) = 2 α + β 3 π 3 Γ ( α ) Γ ( β ) G 5 , 2 2 , 4 [ 8 η 2 γ F S O ( α β ) 2 | 1 α 2 , 2 α 2 , 1 β 2 , 2 β 2 , 1 0 , 1 2 ] .
f I ( I ) = 1 I ¯ exp ( I I ¯ ) ,
P F S O ( γ F S O ) = 0 1 2 e r f c ( γ F S O ( η I ) 2 / 2 ) 1 I ¯ exp ( I I ¯ ) d I = 1 2 [ 1 e r f c ( 1 η I ¯ 2 γ F S O ) exp ( 1 2 ( η I ¯ ) 2 γ F S O ) ] ,

Metrics