Abstract

A low-cost pulsed laser is used in conjunction with a homebuilt laser confocal-scanning epifluorescence microscope having submicron lateral and axial spatial resolution to determine cytoplasmic viscosity at specific intracytoplasmic locations in J774 mouse macrophage cells. Time-dependent fluorescence anisotropy measurements are made at each location and global deconvolution techniques are used to determine rotational correlation times. These rotational correlation times are related to the hydrated volume of 8-hydroxyperene-1,3,6-trisulfonic acid (HPTS) to calculate viscosity at specific points inside the cell. In the cytoplasmic areas measured, rotational correlation times of HPTS ranged from 0.186 ns to 0.411 ns, corresponding to viscosities ranging from 1.00 +/− 0.03 cP to 2.21+/− 0.05 cP.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Chakraborty, W. Parker, K. Elliott, S. Smith, P. Moyer, and G. Elliott, “Molecular mobility in trehalose loaded mammalian cells: time-resolved fluorescence anisotropy measurements,” in Proceedings of the ASME 2008 Summer Bioengineering Conference 2008)
  2. N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
    [CrossRef] [PubMed]
  3. J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
    [CrossRef] [PubMed]
  4. G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
    [CrossRef]
  5. A. Eroglu, G. Elliott, D. L. Wright, M. Toner, and T. L. Toth, “Progressive elimination of microinjected trehalose during mouse embryonic development,” Reprod. Biomed. Online 10(4), 503–510 (2005).
    [CrossRef] [PubMed]
  6. D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
    [CrossRef] [PubMed]
  7. F. H. C. Crick and A. F. W. Hughes, “The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental,” Exp. Cell Res. 1(1), 37–80 (1950).
    [CrossRef]
  8. K. Yagi, “The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement,” Comp. Biochem. Physiol. 3(2), 73–91 (1961).
    [CrossRef] [PubMed]
  9. Y. Hiramoto, “Mechanical properties of the protoplasm of the sea urchin egg. I. Unfertilized egg,” Exp. Cell Res. 56(2-3), 201–208 (1969).
    [CrossRef] [PubMed]
  10. M. Sato, T. Z. Wong, and R. D. Allen, “Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium,” J. Cell Biol. 97(4), 1089–1097 (1983).
    [CrossRef] [PubMed]
  11. M. Sato, T. Z. Wong, D. T. Brown, and R. D. Allen, “Rheological properties of living cytoplasm - A preliminary investigation of squid axoplasm (Loligo Pealei),” Cell Motil. Cytoskeleton 4(1), 7–23 (1984).
    [CrossRef]
  12. B. Wandelt, P. Cywinski, G. D. Darling, and B. R. Stranix, “Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe,” Biosens. Bioelectron. 20(9), 1728–1736 (2005).
    [CrossRef] [PubMed]
  13. B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, and B. R. Stranix, “Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity,” Biosens. Bioelectron. 18(4), 465–471 (2003).
    [CrossRef] [PubMed]
  14. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
    [CrossRef]
  15. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
    [CrossRef] [PubMed]
  16. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
    [CrossRef]
  17. D. Magde, W. W. Webb, and E. Elson, “Thermodynamic Fluctuations in a Reacting System - Measurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705-& (1972).
  18. S. R. Aragon and R. Pecora, “Fluorescence Correlation Spectroscopy as a Probe of Molecular-Dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
    [CrossRef]
  19. D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
    [CrossRef]
  20. M. Gösch and R. Rigler, “Fluorescence correlation spectroscopy of molecular motions and kinetics,” Adv. Drug Deliv. Rev. 57(1), 169–190 (2005).
    [CrossRef]
  21. K. Fushimi and A. S. Verkman, “Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry,” J. Cell Biol. 112(4), 719–725 (1991).
    [CrossRef] [PubMed]
  22. J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity,” Biophys. J. 57(2), 231–240 (1990).
    [CrossRef] [PubMed]
  23. J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
    [CrossRef]
  24. K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
    [CrossRef] [PubMed]
  25. J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009).
    [CrossRef]
  26. J. R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed. (Springer, New York, 2006), pp. xxvi, 954 p.
  27. F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
    [CrossRef]
  28. M. Rampp, C. Buttersack, and H. D. Lüdemann, “c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions,” Carbohydr. Res. 328(4), 561–572 (2000).
    [CrossRef] [PubMed]
  29. D. P. Miller, P. B. Conrad, S. Fucito, H. R. Corti, and J. J. de Pablo, “Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride,” J. Phys. Chem. B 104(44), 10419–10425 (2000).
    [CrossRef]
  30. D. P. Miller, J. J. de Pablo, and H. R. Corti, “Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride,” J. Phys. Chem. B 103(46), 10243–10249 (1999).
    [CrossRef]
  31. D. P. Miller, J. J. de Pablo, and H. Corti, “Thermophysical properties of trehalose and its concentrated aqueous solutions,” Pharm. Res. 14(5), 578–590 (1997).
    [CrossRef] [PubMed]
  32. S. Magazu, G. Maisano, P. Migliardo, and V. Villari, “Experimental simulation of macromolecules in trehalose aqueous solutions: A photon correlation spectroscopy study,” J. Chem. Phys. 111(19), 9086–9092 (1999).
    [CrossRef]
  33. J. Génotelle, “Expression de la viscosité des solutions sucrées,” Industries Alimentaires et Agricoles 95, 747–755 (1978).
  34. M. P. Longinotti and H. R. Corti, “Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime,” J. Phys. Chem. Ref. Data 37(3), 1503–1515 (2008).
    [CrossRef]
  35. A. J. Cross and G. R. Fleming, “Analysis of time-resolved fluorescence anisotropy decays,” Biophys. J. 46(1), 45–56 (1984).
    [CrossRef] [PubMed]
  36. M. Crutzen, M. Ameloot, N. Boens, R. M. Negri, and F. C. Deschryver, “Global Analysis of Unmatched Polarized Fluorescence Decay Curves,” J. Phys. Chem. 97(31), 8133–8145 (1993).
    [CrossRef]
  37. S. R. Flom and J. H. Fendler, “Global Analysis of Fluorescence Depolarization Experiments,” J. Phys. Chem. 92(21), 5908–5913 (1988).
    [CrossRef]

2009 (2)

J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009).
[CrossRef]

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

2008 (2)

M. P. Longinotti and H. R. Corti, “Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime,” J. Phys. Chem. Ref. Data 37(3), 1503–1515 (2008).
[CrossRef]

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[CrossRef] [PubMed]

2006 (2)

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
[CrossRef] [PubMed]

2005 (3)

A. Eroglu, G. Elliott, D. L. Wright, M. Toner, and T. L. Toth, “Progressive elimination of microinjected trehalose during mouse embryonic development,” Reprod. Biomed. Online 10(4), 503–510 (2005).
[CrossRef] [PubMed]

B. Wandelt, P. Cywinski, G. D. Darling, and B. R. Stranix, “Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe,” Biosens. Bioelectron. 20(9), 1728–1736 (2005).
[CrossRef] [PubMed]

M. Gösch and R. Rigler, “Fluorescence correlation spectroscopy of molecular motions and kinetics,” Adv. Drug Deliv. Rev. 57(1), 169–190 (2005).
[CrossRef]

2004 (1)

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

2003 (3)

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, and B. R. Stranix, “Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity,” Biosens. Bioelectron. 18(4), 465–471 (2003).
[CrossRef] [PubMed]

J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
[CrossRef] [PubMed]

2002 (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
[CrossRef]

2000 (2)

M. Rampp, C. Buttersack, and H. D. Lüdemann, “c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions,” Carbohydr. Res. 328(4), 561–572 (2000).
[CrossRef] [PubMed]

D. P. Miller, P. B. Conrad, S. Fucito, H. R. Corti, and J. J. de Pablo, “Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride,” J. Phys. Chem. B 104(44), 10419–10425 (2000).
[CrossRef]

1999 (2)

D. P. Miller, J. J. de Pablo, and H. R. Corti, “Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride,” J. Phys. Chem. B 103(46), 10243–10249 (1999).
[CrossRef]

S. Magazu, G. Maisano, P. Migliardo, and V. Villari, “Experimental simulation of macromolecules in trehalose aqueous solutions: A photon correlation spectroscopy study,” J. Chem. Phys. 111(19), 9086–9092 (1999).
[CrossRef]

1997 (1)

D. P. Miller, J. J. de Pablo, and H. Corti, “Thermophysical properties of trehalose and its concentrated aqueous solutions,” Pharm. Res. 14(5), 578–590 (1997).
[CrossRef] [PubMed]

1993 (1)

M. Crutzen, M. Ameloot, N. Boens, R. M. Negri, and F. C. Deschryver, “Global Analysis of Unmatched Polarized Fluorescence Decay Curves,” J. Phys. Chem. 97(31), 8133–8145 (1993).
[CrossRef]

1991 (1)

K. Fushimi and A. S. Verkman, “Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry,” J. Cell Biol. 112(4), 719–725 (1991).
[CrossRef] [PubMed]

1990 (1)

J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity,” Biophys. J. 57(2), 231–240 (1990).
[CrossRef] [PubMed]

1988 (1)

S. R. Flom and J. H. Fendler, “Global Analysis of Fluorescence Depolarization Experiments,” J. Phys. Chem. 92(21), 5908–5913 (1988).
[CrossRef]

1984 (2)

A. J. Cross and G. R. Fleming, “Analysis of time-resolved fluorescence anisotropy decays,” Biophys. J. 46(1), 45–56 (1984).
[CrossRef] [PubMed]

M. Sato, T. Z. Wong, D. T. Brown, and R. D. Allen, “Rheological properties of living cytoplasm - A preliminary investigation of squid axoplasm (Loligo Pealei),” Cell Motil. Cytoskeleton 4(1), 7–23 (1984).
[CrossRef]

1983 (1)

M. Sato, T. Z. Wong, and R. D. Allen, “Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium,” J. Cell Biol. 97(4), 1089–1097 (1983).
[CrossRef] [PubMed]

1978 (2)

J. Génotelle, “Expression de la viscosité des solutions sucrées,” Industries Alimentaires et Agricoles 95, 747–755 (1978).

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

1976 (1)

S. R. Aragon and R. Pecora, “Fluorescence Correlation Spectroscopy as a Probe of Molecular-Dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[CrossRef]

1974 (2)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[CrossRef] [PubMed]

1969 (1)

Y. Hiramoto, “Mechanical properties of the protoplasm of the sea urchin egg. I. Unfertilized egg,” Exp. Cell Res. 56(2-3), 201–208 (1969).
[CrossRef] [PubMed]

1961 (1)

K. Yagi, “The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement,” Comp. Biochem. Physiol. 3(2), 73–91 (1961).
[CrossRef] [PubMed]

1950 (1)

F. H. C. Crick and A. F. W. Hughes, “The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental,” Exp. Cell Res. 1(1), 37–80 (1950).
[CrossRef]

Acker, J. P.

J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
[CrossRef] [PubMed]

Allen, R. D.

M. Sato, T. Z. Wong, D. T. Brown, and R. D. Allen, “Rheological properties of living cytoplasm - A preliminary investigation of squid axoplasm (Loligo Pealei),” Cell Motil. Cytoskeleton 4(1), 7–23 (1984).
[CrossRef]

M. Sato, T. Z. Wong, and R. D. Allen, “Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium,” J. Cell Biol. 97(4), 1089–1097 (1983).
[CrossRef] [PubMed]

Ameloot, M.

M. Crutzen, M. Ameloot, N. Boens, R. M. Negri, and F. C. Deschryver, “Global Analysis of Unmatched Polarized Fluorescence Decay Curves,” J. Phys. Chem. 97(31), 8133–8145 (1993).
[CrossRef]

Aragon, S. R.

S. R. Aragon and R. Pecora, “Fluorescence Correlation Spectroscopy as a Probe of Molecular-Dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[CrossRef]

Bayley, H.

J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
[CrossRef] [PubMed]

Biswas, D.

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[CrossRef] [PubMed]

Boens, N.

M. Crutzen, M. Ameloot, N. Boens, R. M. Negri, and F. C. Deschryver, “Global Analysis of Unmatched Polarized Fluorescence Decay Curves,” J. Phys. Chem. 97(31), 8133–8145 (1993).
[CrossRef]

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
[CrossRef]

Brown, D. T.

M. Sato, T. Z. Wong, D. T. Brown, and R. D. Allen, “Rheological properties of living cytoplasm - A preliminary investigation of squid axoplasm (Loligo Pealei),” Cell Motil. Cytoskeleton 4(1), 7–23 (1984).
[CrossRef]

Buttersack, C.

M. Rampp, C. Buttersack, and H. D. Lüdemann, “c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions,” Carbohydr. Res. 328(4), 561–572 (2000).
[CrossRef] [PubMed]

Chakraborty, N.

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[CrossRef] [PubMed]

Cheley, S.

J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
[CrossRef] [PubMed]

Chung, P. H.

J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009).
[CrossRef]

Conrad, P. B.

D. P. Miller, P. B. Conrad, S. Fucito, H. R. Corti, and J. J. de Pablo, “Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride,” J. Phys. Chem. B 104(44), 10419–10425 (2000).
[CrossRef]

Corti, H.

D. P. Miller, J. J. de Pablo, and H. Corti, “Thermophysical properties of trehalose and its concentrated aqueous solutions,” Pharm. Res. 14(5), 578–590 (1997).
[CrossRef] [PubMed]

Corti, H. R.

M. P. Longinotti and H. R. Corti, “Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime,” J. Phys. Chem. Ref. Data 37(3), 1503–1515 (2008).
[CrossRef]

D. P. Miller, P. B. Conrad, S. Fucito, H. R. Corti, and J. J. de Pablo, “Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride,” J. Phys. Chem. B 104(44), 10419–10425 (2000).
[CrossRef]

D. P. Miller, J. J. de Pablo, and H. R. Corti, “Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride,” J. Phys. Chem. B 103(46), 10243–10249 (1999).
[CrossRef]

Crick, F. H. C.

F. H. C. Crick and A. F. W. Hughes, “The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental,” Exp. Cell Res. 1(1), 37–80 (1950).
[CrossRef]

Cross, A. J.

A. J. Cross and G. R. Fleming, “Analysis of time-resolved fluorescence anisotropy decays,” Biophys. J. 46(1), 45–56 (1984).
[CrossRef] [PubMed]

Crutzen, M.

M. Crutzen, M. Ameloot, N. Boens, R. M. Negri, and F. C. Deschryver, “Global Analysis of Unmatched Polarized Fluorescence Decay Curves,” J. Phys. Chem. 97(31), 8133–8145 (1993).
[CrossRef]

Cusick, J. L.

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

Cywinski, P.

B. Wandelt, P. Cywinski, G. D. Darling, and B. R. Stranix, “Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe,” Biosens. Bioelectron. 20(9), 1728–1736 (2005).
[CrossRef] [PubMed]

Darling, G. D.

B. Wandelt, P. Cywinski, G. D. Darling, and B. R. Stranix, “Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe,” Biosens. Bioelectron. 20(9), 1728–1736 (2005).
[CrossRef] [PubMed]

B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, and B. R. Stranix, “Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity,” Biosens. Bioelectron. 18(4), 465–471 (2003).
[CrossRef] [PubMed]

Davis, D. M.

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

de Pablo, J. J.

D. P. Miller, P. B. Conrad, S. Fucito, H. R. Corti, and J. J. de Pablo, “Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride,” J. Phys. Chem. B 104(44), 10419–10425 (2000).
[CrossRef]

D. P. Miller, J. J. de Pablo, and H. R. Corti, “Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride,” J. Phys. Chem. B 103(46), 10243–10249 (1999).
[CrossRef]

D. P. Miller, J. J. de Pablo, and H. Corti, “Thermophysical properties of trehalose and its concentrated aqueous solutions,” Pharm. Res. 14(5), 578–590 (1997).
[CrossRef] [PubMed]

Deschryver, F. C.

M. Crutzen, M. Ameloot, N. Boens, R. M. Negri, and F. C. Deschryver, “Global Analysis of Unmatched Polarized Fluorescence Decay Curves,” J. Phys. Chem. 97(31), 8133–8145 (1993).
[CrossRef]

Dix, J. A.

J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity,” Biophys. J. 57(2), 231–240 (1990).
[CrossRef] [PubMed]

Elliott, G.

A. Eroglu, G. Elliott, D. L. Wright, M. Toner, and T. L. Toth, “Progressive elimination of microinjected trehalose during mouse embryonic development,” Reprod. Biomed. Online 10(4), 503–510 (2005).
[CrossRef] [PubMed]

Elliott, G. D.

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[CrossRef] [PubMed]

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

Elliott, K. E.

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

Elson, E. L.

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[CrossRef] [PubMed]

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[CrossRef]

Eroglu, A.

A. Eroglu, G. Elliott, D. L. Wright, M. Toner, and T. L. Toth, “Progressive elimination of microinjected trehalose during mouse embryonic development,” Reprod. Biomed. Online 10(4), 503–510 (2005).
[CrossRef] [PubMed]

Fendler, J. H.

S. R. Flom and J. H. Fendler, “Global Analysis of Fluorescence Depolarization Experiments,” J. Phys. Chem. 92(21), 5908–5913 (1988).
[CrossRef]

Fleming, G. R.

A. J. Cross and G. R. Fleming, “Analysis of time-resolved fluorescence anisotropy decays,” Biophys. J. 46(1), 45–56 (1984).
[CrossRef] [PubMed]

Flom, S. R.

S. R. Flom and J. H. Fendler, “Global Analysis of Fluorescence Depolarization Experiments,” J. Phys. Chem. 92(21), 5908–5913 (1988).
[CrossRef]

Fowler, A.

J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
[CrossRef] [PubMed]

French, P. M. W.

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

Fucito, S.

D. P. Miller, P. B. Conrad, S. Fucito, H. R. Corti, and J. J. de Pablo, “Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride,” J. Phys. Chem. B 104(44), 10419–10425 (2000).
[CrossRef]

Fushimi, K.

K. Fushimi and A. S. Verkman, “Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry,” J. Cell Biol. 112(4), 719–725 (1991).
[CrossRef] [PubMed]

Génotelle, J.

J. Génotelle, “Expression de la viscosité des solutions sucrées,” Industries Alimentaires et Agricoles 95, 747–755 (1978).

Gösch, M.

M. Gösch and R. Rigler, “Fluorescence correlation spectroscopy of molecular motions and kinetics,” Adv. Drug Deliv. Rev. 57(1), 169–190 (2005).
[CrossRef]

Hand, S.

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

Hiramoto, Y.

Y. Hiramoto, “Mechanical properties of the protoplasm of the sea urchin egg. I. Unfertilized egg,” Exp. Cell Res. 56(2-3), 201–208 (1969).
[CrossRef] [PubMed]

Hughes, A. F. W.

F. H. C. Crick and A. F. W. Hughes, “The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental,” Exp. Cell Res. 1(1), 37–80 (1950).
[CrossRef]

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
[CrossRef]

Kuimova, M. K.

J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009).
[CrossRef]

Lanigan, P. M. P.

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

Leveque-Fort, S.

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

Lévêque-Fort, S.

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

Levitt, J. A.

J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009).
[CrossRef]

Lin, F. L.

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

Liu, X. H.

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

Longinotti, M. P.

M. P. Longinotti and H. R. Corti, “Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime,” J. Phys. Chem. Ref. Data 37(3), 1503–1515 (2008).
[CrossRef]

Lu, X. M.

J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
[CrossRef] [PubMed]

Lüdemann, H. D.

M. Rampp, C. Buttersack, and H. D. Lüdemann, “c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions,” Carbohydr. Res. 328(4), 561–572 (2000).
[CrossRef] [PubMed]

Magazu, S.

S. Magazu, G. Maisano, P. Migliardo, and V. Villari, “Experimental simulation of macromolecules in trehalose aqueous solutions: A photon correlation spectroscopy study,” J. Chem. Phys. 111(19), 9086–9092 (1999).
[CrossRef]

Magde, D.

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[CrossRef] [PubMed]

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[CrossRef]

Maisano, G.

S. Magazu, G. Maisano, P. Migliardo, and V. Villari, “Experimental simulation of macromolecules in trehalose aqueous solutions: A photon correlation spectroscopy study,” J. Chem. Phys. 111(19), 9086–9092 (1999).
[CrossRef]

Mason, T. G.

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
[CrossRef] [PubMed]

Menze, M.

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

Mielniczak, A.

B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, and B. R. Stranix, “Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity,” Biosens. Bioelectron. 18(4), 465–471 (2003).
[CrossRef] [PubMed]

Migliardo, P.

S. Magazu, G. Maisano, P. Migliardo, and V. Villari, “Experimental simulation of macromolecules in trehalose aqueous solutions: A photon correlation spectroscopy study,” J. Chem. Phys. 111(19), 9086–9092 (1999).
[CrossRef]

Miller, D. P.

D. P. Miller, P. B. Conrad, S. Fucito, H. R. Corti, and J. J. de Pablo, “Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride,” J. Phys. Chem. B 104(44), 10419–10425 (2000).
[CrossRef]

D. P. Miller, J. J. de Pablo, and H. R. Corti, “Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride,” J. Phys. Chem. B 103(46), 10243–10249 (1999).
[CrossRef]

D. P. Miller, J. J. de Pablo, and H. Corti, “Thermophysical properties of trehalose and its concentrated aqueous solutions,” Pharm. Res. 14(5), 578–590 (1997).
[CrossRef] [PubMed]

Moyer, P.

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[CrossRef] [PubMed]

Moyer, P. J.

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

Negri, R. M.

M. Crutzen, M. Ameloot, N. Boens, R. M. Negri, and F. C. Deschryver, “Global Analysis of Unmatched Polarized Fluorescence Decay Curves,” J. Phys. Chem. 97(31), 8133–8145 (1993).
[CrossRef]

Parker, W.

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[CrossRef] [PubMed]

Pecora, R.

S. R. Aragon and R. Pecora, “Fluorescence Correlation Spectroscopy as a Probe of Molecular-Dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[CrossRef]

Phillips, D.

J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009).
[CrossRef]

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

Rampp, M.

M. Rampp, C. Buttersack, and H. D. Lüdemann, “c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions,” Carbohydr. Res. 328(4), 561–572 (2000).
[CrossRef] [PubMed]

Rigler, R.

M. Gösch and R. Rigler, “Fluorescence correlation spectroscopy of molecular motions and kinetics,” Adv. Drug Deliv. Rev. 57(1), 169–190 (2005).
[CrossRef]

Sabharwal, Y.

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

Sato, M.

M. Sato, T. Z. Wong, D. T. Brown, and R. D. Allen, “Rheological properties of living cytoplasm - A preliminary investigation of squid axoplasm (Loligo Pealei),” Cell Motil. Cytoskeleton 4(1), 7–23 (1984).
[CrossRef]

M. Sato, T. Z. Wong, and R. D. Allen, “Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium,” J. Cell Biol. 97(4), 1089–1097 (1983).
[CrossRef] [PubMed]

Siegel, J.

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

Smith, S. T.

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

Stranix, B. R.

B. Wandelt, P. Cywinski, G. D. Darling, and B. R. Stranix, “Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe,” Biosens. Bioelectron. 20(9), 1728–1736 (2005).
[CrossRef] [PubMed]

B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, and B. R. Stranix, “Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity,” Biosens. Bioelectron. 18(4), 465–471 (2003).
[CrossRef] [PubMed]

Suhling, K.

J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009).
[CrossRef]

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

Teitell, M. A.

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
[CrossRef] [PubMed]

Teo, C. S.

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

Toner, M.

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

A. Eroglu, G. Elliott, D. L. Wright, M. Toner, and T. L. Toth, “Progressive elimination of microinjected trehalose during mouse embryonic development,” Reprod. Biomed. Online 10(4), 503–510 (2005).
[CrossRef] [PubMed]

J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
[CrossRef] [PubMed]

Toth, T. L.

A. Eroglu, G. Elliott, D. L. Wright, M. Toner, and T. L. Toth, “Progressive elimination of microinjected trehalose during mouse embryonic development,” Reprod. Biomed. Online 10(4), 503–510 (2005).
[CrossRef] [PubMed]

Turkewitsch, P.

B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, and B. R. Stranix, “Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity,” Biosens. Bioelectron. 18(4), 465–471 (2003).
[CrossRef] [PubMed]

Verkman, A. S.

K. Fushimi and A. S. Verkman, “Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry,” J. Cell Biol. 112(4), 719–725 (1991).
[CrossRef] [PubMed]

J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity,” Biophys. J. 57(2), 231–240 (1990).
[CrossRef] [PubMed]

Villari, V.

S. Magazu, G. Maisano, P. Migliardo, and V. Villari, “Experimental simulation of macromolecules in trehalose aqueous solutions: A photon correlation spectroscopy study,” J. Chem. Phys. 111(19), 9086–9092 (1999).
[CrossRef]

Vincent, J.

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

Wandelt, B.

B. Wandelt, P. Cywinski, G. D. Darling, and B. R. Stranix, “Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe,” Biosens. Bioelectron. 20(9), 1728–1736 (2005).
[CrossRef] [PubMed]

B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, and B. R. Stranix, “Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity,” Biosens. Bioelectron. 18(4), 465–471 (2003).
[CrossRef] [PubMed]

Webb, S. E. D.

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

Webb, W. W.

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[CrossRef] [PubMed]

Weihs, D.

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
[CrossRef] [PubMed]

Witt, T.

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

Wong, T. Z.

M. Sato, T. Z. Wong, D. T. Brown, and R. D. Allen, “Rheological properties of living cytoplasm - A preliminary investigation of squid axoplasm (Loligo Pealei),” Cell Motil. Cytoskeleton 4(1), 7–23 (1984).
[CrossRef]

M. Sato, T. Z. Wong, and R. D. Allen, “Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium,” J. Cell Biol. 97(4), 1089–1097 (1983).
[CrossRef] [PubMed]

Wright, D. L.

A. Eroglu, G. Elliott, D. L. Wright, M. Toner, and T. L. Toth, “Progressive elimination of microinjected trehalose during mouse embryonic development,” Reprod. Biomed. Online 10(4), 503–510 (2005).
[CrossRef] [PubMed]

Yagi, K.

K. Yagi, “The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement,” Comp. Biochem. Physiol. 3(2), 73–91 (1961).
[CrossRef] [PubMed]

Yahioglu, G.

J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009).
[CrossRef]

Young, V.

J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
[CrossRef] [PubMed]

Adv. Drug Deliv. Rev. (1)

M. Gösch and R. Rigler, “Fluorescence correlation spectroscopy of molecular motions and kinetics,” Adv. Drug Deliv. Rev. 57(1), 169–190 (2005).
[CrossRef]

Biophys. J. (3)

J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity,” Biophys. J. 57(2), 231–240 (1990).
[CrossRef] [PubMed]

D. Weihs, T. G. Mason, and M. A. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91(11), 4296–4305 (2006).
[CrossRef] [PubMed]

A. J. Cross and G. R. Fleming, “Analysis of time-resolved fluorescence anisotropy decays,” Biophys. J. 46(1), 45–56 (1984).
[CrossRef] [PubMed]

Biopolymers (3)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[CrossRef]

D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[CrossRef] [PubMed]

D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence Correlation Spectroscopy 3. Uniform Translation and Laminar-Flow,” Biopolymers 17(2), 361–376 (1978).
[CrossRef]

Biosens. Bioelectron. (2)

B. Wandelt, P. Cywinski, G. D. Darling, and B. R. Stranix, “Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe,” Biosens. Bioelectron. 20(9), 1728–1736 (2005).
[CrossRef] [PubMed]

B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, and B. R. Stranix, “Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity,” Biosens. Bioelectron. 18(4), 465–471 (2003).
[CrossRef] [PubMed]

Biotechnol. Bioeng. (2)

N. Chakraborty, D. Biswas, W. Parker, P. Moyer, and G. D. Elliott, “A role for microwave processing in the dry preservation of mammalian cells,” Biotechnol. Bioeng. 100(4), 782–796 (2008).
[CrossRef] [PubMed]

J. P. Acker, X. M. Lu, V. Young, S. Cheley, H. Bayley, A. Fowler, and M. Toner, “Measurement of trehalose loading of mammalian cells porated with a metal-actuated switchable pore,” Biotechnol. Bioeng. 82(5), 525–532 (2003).
[CrossRef] [PubMed]

Carbohydr. Res. (1)

M. Rampp, C. Buttersack, and H. D. Lüdemann, “c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions,” Carbohydr. Res. 328(4), 561–572 (2000).
[CrossRef] [PubMed]

Cell Motil. Cytoskeleton (1)

M. Sato, T. Z. Wong, D. T. Brown, and R. D. Allen, “Rheological properties of living cytoplasm - A preliminary investigation of squid axoplasm (Loligo Pealei),” Cell Motil. Cytoskeleton 4(1), 7–23 (1984).
[CrossRef]

Comp. Biochem. Physiol. (1)

K. Yagi, “The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement,” Comp. Biochem. Physiol. 3(2), 73–91 (1961).
[CrossRef] [PubMed]

Cryobiology (1)

G. D. Elliott, X. H. Liu, J. L. Cusick, M. Menze, J. Vincent, T. Witt, S. Hand, and M. Toner, “Trehalose uptake through P2X7 purinergic channels provides dehydration protection,” Cryobiology 52(1), 114–127 (2006).
[CrossRef]

Exp. Cell Res. (2)

Y. Hiramoto, “Mechanical properties of the protoplasm of the sea urchin egg. I. Unfertilized egg,” Exp. Cell Res. 56(2-3), 201–208 (1969).
[CrossRef] [PubMed]

F. H. C. Crick and A. F. W. Hughes, “The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental,” Exp. Cell Res. 1(1), 37–80 (1950).
[CrossRef]

Industries Alimentaires et Agricoles (1)

J. Génotelle, “Expression de la viscosité des solutions sucrées,” Industries Alimentaires et Agricoles 95, 747–755 (1978).

J. Cell Biol. (2)

K. Fushimi and A. S. Verkman, “Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry,” J. Cell Biol. 112(4), 719–725 (1991).
[CrossRef] [PubMed]

M. Sato, T. Z. Wong, and R. D. Allen, “Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium,” J. Cell Biol. 97(4), 1089–1097 (1983).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

S. R. Aragon and R. Pecora, “Fluorescence Correlation Spectroscopy as a Probe of Molecular-Dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[CrossRef]

S. Magazu, G. Maisano, P. Migliardo, and V. Villari, “Experimental simulation of macromolecules in trehalose aqueous solutions: A photon correlation spectroscopy study,” J. Chem. Phys. 111(19), 9086–9092 (1999).
[CrossRef]

J. Phys. Chem. (2)

M. Crutzen, M. Ameloot, N. Boens, R. M. Negri, and F. C. Deschryver, “Global Analysis of Unmatched Polarized Fluorescence Decay Curves,” J. Phys. Chem. 97(31), 8133–8145 (1993).
[CrossRef]

S. R. Flom and J. H. Fendler, “Global Analysis of Fluorescence Depolarization Experiments,” J. Phys. Chem. 92(21), 5908–5913 (1988).
[CrossRef]

J. Phys. Chem. B (2)

D. P. Miller, P. B. Conrad, S. Fucito, H. R. Corti, and J. J. de Pablo, “Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride,” J. Phys. Chem. B 104(44), 10419–10425 (2000).
[CrossRef]

D. P. Miller, J. J. de Pablo, and H. R. Corti, “Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride,” J. Phys. Chem. B 103(46), 10243–10249 (1999).
[CrossRef]

J. Phys. Chem. C (1)

J. A. Levitt, M. K. Kuimova, G. Yahioglu, P. H. Chung, K. Suhling, and D. Phillips, “Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging,” J. Phys. Chem. C 113(27), 11634–11642 (2009).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

M. P. Longinotti and H. R. Corti, “Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime,” J. Phys. Chem. Ref. Data 37(3), 1503–1515 (2008).
[CrossRef]

Opt. Lett. (1)

K. Suhling, J. Siegel, P. M. P. Lanigan, S. Lévêque-Fort, S. E. D. Webb, D. Phillips, D. M. Davis, and P. M. W. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett. 29(6), 584–586 (2004).
[CrossRef] [PubMed]

Pharm. Res. (1)

D. P. Miller, J. J. de Pablo, and H. Corti, “Thermophysical properties of trehalose and its concentrated aqueous solutions,” Pharm. Res. 14(5), 578–590 (1997).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
[CrossRef]

Reprod. Biomed. Online (1)

A. Eroglu, G. Elliott, D. L. Wright, M. Toner, and T. L. Toth, “Progressive elimination of microinjected trehalose during mouse embryonic development,” Reprod. Biomed. Online 10(4), 503–510 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

F. L. Lin, K. E. Elliott, W. Parker, N. Chakraborty, C. S. Teo, S. T. Smith, G. D. Elliott, and P. J. Moyer, “Confocal and force probe imaging system for simultaneous three-dimensional optical and mechanical spectroscopic evaluation of biological samples,” Rev. Sci. Instrum. 80(055110), 7 (2009).
[CrossRef]

J. Siegel, K. Suhling, S. Leveque-Fort, S. E. D. Webb, D. M. Davis, D. Phillips, Y. Sabharwal, and P. M. W. French, “Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): Imaging the rotational mobility of a fluorophore,” Rev. Sci. Instrum. 74(1), 182–192 (2003).
[CrossRef]

Other (3)

J. R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed. (Springer, New York, 2006), pp. xxvi, 954 p.

D. Magde, W. W. Webb, and E. Elson, “Thermodynamic Fluctuations in a Reacting System - Measurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29, 705-& (1972).

N. Chakraborty, W. Parker, K. Elliott, S. Smith, P. Moyer, and G. Elliott, “Molecular mobility in trehalose loaded mammalian cells: time-resolved fluorescence anisotropy measurements,” in Proceedings of the ASME 2008 Summer Bioengineering Conference 2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of optical arrangement and instrumentation for fluorescence anisotropy experiment.

Fig. 2
Fig. 2

Calculated viscosity of trehalose samples as a function of the ratio of the weight of trehalose to the weight of the solution.

Fig. 3
Fig. 3

Measured instrument response curve for parallel and perpendicular channels (normalized).

Fig. 4
Fig. 4

Deconvolved fluorescene anisotropy curve showing measured data (green and blue curves) and fitted anisotropy curves.

Fig. 5
Fig. 5

Calibration curve: trehalose rotational correlation times – viscosity

Fig. 6
Fig. 6

Mouse J774 cell image showing viscosity measurements at specific sites.

Tables (1)

Tables Icon

Table 1 Calculated viscosity and rotational correlation times for different wt/wt% samples of aqueous trehalose.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = I | | ( t ) I ( t ) I | | ( t ) + 2 I ( t )
I | | ( t ) = 1 3 I o e t τ ( 1 + 2 r o e t θ ) I ( t ) = 1 3 I o e t τ ( 1 r o e t θ ) .
r ( t ) = r o e t θ .
θ = η V R T ,
r ( t ) = I | | ( t ) g I ( t ) I | | ( t ) + 2 g I ( t ) .
g = v v h v v h h h
log 10 ( η η * ) = a 1 + a 2 + ϕ ( b 1 + b 2 x n )

Metrics