Abstract

We present an extensive experimental and theoretical study of the particle plasmon resonances of L-shaped gold nanoparticles. For the small characteristic size of the particles, we observe more higher-order resonances than previously from related shapes, and show that a short-wavelength resonance arises from the particle arm width and is not the suggested volume plasmon. We interpret the resonances through the local vector electric field in the structure and by fully taking into account the particle symmetry.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
    [CrossRef] [PubMed]
  2. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
    [CrossRef]
  3. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [CrossRef]
  4. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  5. B. Lamprecht, A. Leitner, and F. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
    [CrossRef]
  6. B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
    [CrossRef] [PubMed]
  7. B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 7(2), S110–S117 (2005).
    [CrossRef]
  8. M. Sukharev, J. Sung, K. G. Spears, and T. Seideman, “Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons,” Phys. Rev. B 76(18), 184302 (2007).
    [CrossRef]
  9. Y. Jing, Z. Jia-Sen, W. Xiao-Fei, and G. Qi-Huang, “Resonant Modes of L-Shaped Gold Nanoparticles,” Chin. Phys. Lett. 26(6), 067802 (2009).
    [CrossRef]
  10. E. Tatartschuk, E. Shamonina, and L. Solymar, “Plasmonic excitations in metallic nanoparticles: resonances, dispersion characteristics and near-field patterns,” Opt. Express 17(10), 8447–8460 (2009).
    [CrossRef] [PubMed]
  11. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
    [CrossRef] [PubMed]
  12. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
    [CrossRef] [PubMed]
  13. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
    [CrossRef]
  14. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
    [CrossRef]
  15. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  16. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
    [CrossRef]

2009

Y. Jing, Z. Jia-Sen, W. Xiao-Fei, and G. Qi-Huang, “Resonant Modes of L-Shaped Gold Nanoparticles,” Chin. Phys. Lett. 26(6), 067802 (2009).
[CrossRef]

E. Tatartschuk, E. Shamonina, and L. Solymar, “Plasmonic excitations in metallic nanoparticles: resonances, dispersion characteristics and near-field patterns,” Opt. Express 17(10), 8447–8460 (2009).
[CrossRef] [PubMed]

2008

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

2007

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

M. Sukharev, J. Sung, K. G. Spears, and T. Seideman, “Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons,” Phys. Rev. B 76(18), 184302 (2007).
[CrossRef]

2006

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

2005

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 7(2), S110–S117 (2005).
[CrossRef]

J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

2004

B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

1999

B. Lamprecht, A. Leitner, and F. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Aussenegg, F.

B. Lamprecht, A. Leitner, and F. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Cai, W.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Canfield, B.

B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

Canfield, B. K.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 7(2), S110–S117 (2005).
[CrossRef]

Chettiar, U. K.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Clark, A. W.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[CrossRef]

Cooper, J. M.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[CrossRef]

Corrigan, T. D.

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

Cumming, D. R. S.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[CrossRef]

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Drachev, V. P.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Drew, H. D.

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

Etrich, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

Giessen, H.

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

Glidle, A.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[CrossRef]

Greffet, J.-J.

J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Jefimovs, K.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 7(2), S110–S117 (2005).
[CrossRef]

B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

Jia-Sen, Z.

Y. Jing, Z. Jia-Sen, W. Xiao-Fei, and G. Qi-Huang, “Resonant Modes of L-Shaped Gold Nanoparticles,” Chin. Phys. Lett. 26(6), 067802 (2009).
[CrossRef]

Jing, Y.

Y. Jing, Z. Jia-Sen, W. Xiao-Fei, and G. Qi-Huang, “Resonant Modes of L-Shaped Gold Nanoparticles,” Chin. Phys. Lett. 26(6), 067802 (2009).
[CrossRef]

Kauranen, M.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 7(2), S110–S117 (2005).
[CrossRef]

B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

Kildishev, A. V.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Kolb, P. W.

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

Kuhl, J.

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

Kujala, S.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 7(2), S110–S117 (2005).
[CrossRef]

B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

Lamprecht, B.

B. Lamprecht, A. Leitner, and F. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[CrossRef]

Lederer, F.

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, A. Leitner, and F. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Phaneuf, R. J.

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Qi-Huang, G.

Y. Jing, Z. Jia-Sen, W. Xiao-Fei, and G. Qi-Huang, “Resonant Modes of L-Shaped Gold Nanoparticles,” Chin. Phys. Lett. 26(6), 067802 (2009).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

Sarychev, A. K.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Schmadel, D. C.

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

Seideman, T.

M. Sukharev, J. Sung, K. G. Spears, and T. Seideman, “Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons,” Phys. Rev. B 76(18), 184302 (2007).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Shamonina, E.

E. Tatartschuk, E. Shamonina, and L. Solymar, “Plasmonic excitations in metallic nanoparticles: resonances, dispersion characteristics and near-field patterns,” Opt. Express 17(10), 8447–8460 (2009).
[CrossRef] [PubMed]

Sheridan, A. K.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[CrossRef]

Solymar, L.

E. Tatartschuk, E. Shamonina, and L. Solymar, “Plasmonic excitations in metallic nanoparticles: resonances, dispersion characteristics and near-field patterns,” Opt. Express 17(10), 8447–8460 (2009).
[CrossRef] [PubMed]

Spears, K. G.

M. Sukharev, J. Sung, K. G. Spears, and T. Seideman, “Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons,” Phys. Rev. B 76(18), 184302 (2007).
[CrossRef]

Sukharev, M.

M. Sukharev, J. Sung, K. G. Spears, and T. Seideman, “Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons,” Phys. Rev. B 76(18), 184302 (2007).
[CrossRef]

Sung, J.

M. Sukharev, J. Sung, K. G. Spears, and T. Seideman, “Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons,” Phys. Rev. B 76(18), 184302 (2007).
[CrossRef]

Sushkov, A. B.

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Tatartschuk, E.

E. Tatartschuk, E. Shamonina, and L. Solymar, “Plasmonic excitations in metallic nanoparticles: resonances, dispersion characteristics and near-field patterns,” Opt. Express 17(10), 8447–8460 (2009).
[CrossRef] [PubMed]

Turunen, J.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 7(2), S110–S117 (2005).
[CrossRef]

B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

Vallius, T.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 7(2), S110–S117 (2005).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Xiao-Fei, W.

Y. Jing, Z. Jia-Sen, W. Xiao-Fei, and G. Qi-Huang, “Resonant Modes of L-Shaped Gold Nanoparticles,” Chin. Phys. Lett. 26(6), 067802 (2009).
[CrossRef]

Yuan, H.-K.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Zentgraf, T.

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

Appl. Phys. B

B. Lamprecht, A. Leitner, and F. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[CrossRef]

Appl. Phys. Lett.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90(14), 143105 (2007).
[CrossRef]

Chin. Phys. Lett.

Y. Jing, Z. Jia-Sen, W. Xiao-Fei, and G. Qi-Huang, “Resonant Modes of L-Shaped Gold Nanoparticles,” Chin. Phys. Lett. 26(6), 067802 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

B. K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, and M. Kauranen, “Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 7(2), S110–S117 (2005).
[CrossRef]

J. Phys. Chem. B

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[CrossRef]

Opt. Express

E. Tatartschuk, E. Shamonina, and L. Solymar, “Plasmonic excitations in metallic nanoparticles: resonances, dispersion characteristics and near-field patterns,” Opt. Express 17(10), 8447–8460 (2009).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
[CrossRef] [PubMed]

B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express 12(22), 5418–5423 (2004).
[CrossRef] [PubMed]

Opt. Lett.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Phys. Rev. B

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

M. Sukharev, J. Sung, K. G. Spears, and T. Seideman, “Optical properties of metal nanoparticles with no center of inversion symmetry: Observation of volume plasmons,” Phys. Rev. B 76(18), 184302 (2007).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71(8), 085416 (2005).
[CrossRef]

Phys. Rev. Lett.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Science

J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[CrossRef] [PubMed]

Other

L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Supplementary Material (1)

» Media 1: AVI (1334 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The extinction spectra of an array of a) bars (length 300 nm, width 50 nm) for x and y polarization, and b) L-particles (arm length 300 nm, arm width 50 nm) for a and b polarization, which are the eigenpolarizations of the structure along the mirror plane and perpendicular to it. Solid lines are measured spectra and dashed lines are calculated. Insets: Scanning electron microscope images of bars and L-particles, and the coordinate systems.

Fig. 2
Fig. 2

Calculated extinction cross-section spectra of a single bar for x and y polarization. Vector field presentation of the local electric field at the fundamental resonance for x polarization (x1), higher-order resonance for x polarization (x2) and the resonance for y polarization (y1). The distributions are normalized to the maximum of each plot separately.

Fig. 3
Fig. 3

Calculated extinction cross-section spectra of a single L-shaped nanoparticle (arm length 300 nm, arm width 50 nm) for a and b polarization. Vector field presentation of the local electric field for a and b polarization at the fundamental resonance (1) and at the higher-order resonances (2, 3). The distributions are normalized to the maximum of each plot separately.

Fig. 4
Fig. 4

Local vector electric field distributions at the arm-width-related resonances at 540 nm for a and b polarization. (Media 1)

Metrics