Abstract

We report the demonstration of a heat-fraction-limited CW Yb:YAG laser operating near 77 K with output at 1029 nm, pumped with a diffraction-limited room-temperature CW Nd:YAG laser operating at 946 nm. With a 50% reflectivity outcoupler, the average threshold absorbed pump power was 18.8 mW and the average slope efficiency 91.9%, close to the heat-fraction limited value of 91.5%. Average optical to optical and photon slope efficiencies are 84% and 100% respectively. To the best of our knowledge this solid-state laser is the first to operate at the heat-fraction-limit and demonstrates record slope, photon slope and optical-optical efficiencies for optically-pumped solid-state lasers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Brown, ““The promise of cryogenic lasers,” Invited Paper, IEEE Special Issue on Tops,” Quantum Electron. 11, 587–599 (2005).
  2. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [CrossRef]
  3. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
    [CrossRef] [PubMed]
  4. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
    [CrossRef] [PubMed]
  5. T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
    [CrossRef]
  6. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
    [CrossRef]
  7. D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
    [CrossRef]
  8. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
    [CrossRef]
  9. D. C. Brown, V. Vitali, “Yb:YAG Kinetics model including saturation and power conservation,” paper accepted for publication in IEEE J. Quantum. Electron., July (2010).
  10. D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
    [CrossRef]
  11. D. C. Brown, V. Vitali, T. M. Bruno, “Saturated absorption effects in CW-pumped solid-state lasers,” paper accepted for publication in IEEE J. Quantum. Electron., July (2010).
    [CrossRef]
  12. P. Lacovara, “Energy transfer and up-conversion in Yb:YAG and Yb:Er:YAG,” Ph.D. Thesis, Boston University (1992), Available from University Microfilms Inc., Ann Arbor, MI, USA.
  13. J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
    [CrossRef]

2008

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

2007

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

2005

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[CrossRef]

D. C. Brown, ““The promise of cryogenic lasers,” Invited Paper, IEEE Special Issue on Tops,” Quantum Electron. 11, 587–599 (2005).

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

2004

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

2003

J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[CrossRef]

1991

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Bass, M.

J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[CrossRef]

Bennett, L. L.

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Brown, D. C.

D. C. Brown, V. Vitali, T. M. Bruno, “Saturated absorption effects in CW-pumped solid-state lasers,” paper accepted for publication in IEEE J. Quantum. Electron., July (2010).
[CrossRef]

D. C. Brown, V. Vitali, “Yb:YAG Kinetics model including saturation and power conservation,” paper accepted for publication in IEEE J. Quantum. Electron., July (2010).

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

D. C. Brown, ““The promise of cryogenic lasers,” Invited Paper, IEEE Special Issue on Tops,” Quantum Electron. 11, 587–599 (2005).

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[CrossRef]

Bruno, T. M.

D. C. Brown, V. Vitali, T. M. Bruno, “Saturated absorption effects in CW-pumped solid-state lasers,” paper accepted for publication in IEEE J. Quantum. Electron., July (2010).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Choi, H. K.

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Cone, R. L.

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[CrossRef]

Deng, P.

J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[CrossRef]

Dong, J.

J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[CrossRef]

Equal, R. W.

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[CrossRef]

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Fujita, M.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Gan, F.

J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[CrossRef]

Guelzow, J.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Izawa, Y.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Kawanaka, J.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Kawashima, T.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

Kowalewski, K.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Kuper, J. W.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Lacovara, P.

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Lotito, B. J.

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Mao, Y.

J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[CrossRef]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Shoji, T.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Singley, J. M.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Sun, Y.

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Tokita, S.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Vitali, V.

D. C. Brown, V. Vitali, “Yb:YAG Kinetics model including saturation and power conservation,” paper accepted for publication in IEEE J. Quantum. Electron., July (2010).

D. C. Brown, V. Vitali, T. M. Bruno, “Saturated absorption effects in CW-pumped solid-state lasers,” paper accepted for publication in IEEE J. Quantum. Electron., July (2010).
[CrossRef]

Wang, C. A.

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

Yager, E.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Appl. Phys. B

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

IEEE J. Quantum. Electron

D. C. Brown, V. Vitali, “Yb:YAG Kinetics model including saturation and power conservation,” paper accepted for publication in IEEE J. Quantum. Electron., July (2010).

D. C. Brown, V. Vitali, T. M. Bruno, “Saturated absorption effects in CW-pumped solid-state lasers,” paper accepted for publication in IEEE J. Quantum. Electron., July (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11(3), 604–612 (2005).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg, ““Cryogenic Yb3+-doped solid-state lasers”, Invited Paper,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, Y. Izawa, “Quantum-defect-limited operation of diode-pumped Yb:YAG laser at low temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Opt. Lett.

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991).
[CrossRef] [PubMed]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Proc. SPIE

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Quantum Electron.

D. C. Brown, ““The promise of cryogenic lasers,” Invited Paper, IEEE Special Issue on Tops,” Quantum Electron. 11, 587–599 (2005).

Other

P. Lacovara, “Energy transfer and up-conversion in Yb:YAG and Yb:Er:YAG,” Ph.D. Thesis, Boston University (1992), Available from University Microfilms Inc., Ann Arbor, MI, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental set up of 946 nm laser-pumped cryogenic Yb:YAG laser. C-cryogenic liquid nitrogen vacuum dewar, HR- flat high reflector at 1029 nm, OC- curved outcoupler with 50% reflectivity at 1029 nm and 1250 cm radius, W- anti-reflection coated at 1029 nm fused silica windows, 10 cm DCHR- 10 cm radius of curvature, high reflector at 1029 nm, L1- collimating lens, L2- focusing lens, CA- Sapphire-Yb:YAG crystal assembly.

Fig. 2
Fig. 2

1029 nm output power as a function of absorbed 946 nm pump power for four different data sets, using an outcoupler transmission of 50%.

Fig. 3
Fig. 3

Optical to optical efficiency as a function of absorbed 946 nm pump power for four different data sets, using an outcoupler transmission of 50%.

Fig. 4
Fig. 4

Findlay-Clay Plot showing threshold absorbed 946 nm pump power as a function of the parameter –(1/2) ln(R), where R is the measured outcoupler reflectivity.

Tables (2)

Tables Icon

Table 1 Comparison of Recent Cryogenic and Room Temperature Yb:YAG Laser Results

Tables Icon

Table 2 Threshold absorbed pump power, slope efficiency, photon slope efficiency, and optical-optical efficiency for all four data sets, with average values and standard deviation.

Metrics