Abstract

We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and D. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  3. X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94(24), 241109 (2009).
    [CrossRef]
  4. F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, and A. Kristensen, “Optofluidic tuning of photonic crystal band edge lasers,” Appl. Phys. Lett. 91(22), 223503 (2007).
    [CrossRef]
  5. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
    [CrossRef]
  6. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
    [CrossRef]
  7. C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
    [CrossRef]
  8. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
    [CrossRef] [PubMed]
  9. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
    [CrossRef] [PubMed]
  10. C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005).
    [CrossRef] [PubMed]
  11. D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7(12), 1791–1799 (2007).
    [CrossRef] [PubMed]
  12. S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A Phys. 136(1), 69–79 (2007).
    [CrossRef]
  13. M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76(4), 895–899 (2004).
    [CrossRef] [PubMed]
  14. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
    [CrossRef]
  15. W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010).
    [CrossRef]
  16. Y. Xu, C. Chiu, F. Jiang, Q. Lin, and Y. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A Phys. 121, 253–261 (2005).
    [CrossRef]
  17. P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements,” J. Microelectromech. Syst. 6(2), 119–125 (1997).
    [CrossRef]
  18. R. W. Miller, Flow Measurement Engineering Handbook, 3rd ed. (McGraw-Hill, 2006).

2010 (1)

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010).
[CrossRef]

2009 (4)

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94(24), 241109 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[CrossRef]

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

2008 (1)

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

2007 (5)

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[CrossRef] [PubMed]

F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, and A. Kristensen, “Optofluidic tuning of photonic crystal band edge lasers,” Appl. Phys. Lett. 91(22), 223503 (2007).
[CrossRef]

C. Monat, P. Domachuk, and D. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7(12), 1791–1799 (2007).
[CrossRef] [PubMed]

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A Phys. 136(1), 69–79 (2007).
[CrossRef]

2006 (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005).
[CrossRef] [PubMed]

Y. Xu, C. Chiu, F. Jiang, Q. Lin, and Y. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A Phys. 121, 253–261 (2005).
[CrossRef]

2004 (1)

M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76(4), 895–899 (2004).
[CrossRef] [PubMed]

2000 (1)

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[CrossRef]

1997 (1)

P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements,” J. Microelectromech. Syst. 6(2), 119–125 (1997).
[CrossRef]

Arango, F. B.

F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, and A. Kristensen, “Optofluidic tuning of photonic crystal band edge lasers,” Appl. Phys. Lett. 91(22), 223503 (2007).
[CrossRef]

Burns, M. A.

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7(12), 1791–1799 (2007).
[CrossRef] [PubMed]

Cadou, C. P.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A Phys. 136(1), 69–79 (2007).
[CrossRef]

Campbell, K.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

Chang, D. S.

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7(12), 1791–1799 (2007).
[CrossRef] [PubMed]

Chiu, C.

Y. Xu, C. Chiu, F. Jiang, Q. Lin, and Y. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A Phys. 121, 253–261 (2005).
[CrossRef]

Chou, H. P.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[CrossRef]

Christiansen, M. B.

F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, and A. Kristensen, “Optofluidic tuning of photonic crystal band edge lasers,” Appl. Phys. Lett. 91(22), 223503 (2007).
[CrossRef]

Day, J. C.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A Phys. 136(1), 69–79 (2007).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and D. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Eggleton, B. J.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

Eggleton, D. J.

C. Monat, P. Domachuk, and D. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Enoksson, P.

P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements,” J. Microelectromech. Syst. 6(2), 119–125 (1997).
[CrossRef]

Fainman, Y.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

Fan, X.

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94(24), 241109 (2009).
[CrossRef]

Gersborg-Hansen, M.

F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, and A. Kristensen, “Optofluidic tuning of photonic crystal band edge lasers,” Appl. Phys. Lett. 91(22), 223503 (2007).
[CrossRef]

Ghodssi, R.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A Phys. 136(1), 69–79 (2007).
[CrossRef]

Graham, A.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

Granwehr, J.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005).
[CrossRef] [PubMed]

Groisman, A.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

Han, S. I.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005).
[CrossRef] [PubMed]

Hilty, C.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005).
[CrossRef] [PubMed]

Huang, T. J.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[CrossRef] [PubMed]

Jiang, F.

Y. Xu, C. Chiu, F. Jiang, Q. Lin, and Y. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A Phys. 121, 253–261 (2005).
[CrossRef]

Juluri, B. K.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[CrossRef] [PubMed]

Karnutsch, C.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

Krauss, T. F.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

Kristensen, A.

F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, and A. Kristensen, “Optofluidic tuning of photonic crystal band edge lasers,” Appl. Phys. Lett. 91(22), 223503 (2007).
[CrossRef]

Langelier, S. M.

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7(12), 1791–1799 (2007).
[CrossRef] [PubMed]

Levy, U.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

Li, S.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A Phys. 136(1), 69–79 (2007).
[CrossRef]

Li, Z.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[CrossRef]

Lin, Q.

Y. Xu, C. Chiu, F. Jiang, Q. Lin, and Y. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A Phys. 121, 253–261 (2005).
[CrossRef]

Mao, X.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[CrossRef] [PubMed]

McDonnell, E. E.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005).
[CrossRef] [PubMed]

McPhedran, R.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and D. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Mortensen, N. A.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

O’Faolain, L.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

Pang, L.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

Park, J. J.

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A Phys. 136(1), 69–79 (2007).
[CrossRef]

Pierce, K. L.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005).
[CrossRef] [PubMed]

Pines, A.

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005).
[CrossRef] [PubMed]

Psaltis, D.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[CrossRef]

Scherer, A.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[CrossRef]

Seki, M.

M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76(4), 895–899 (2004).
[CrossRef] [PubMed]

Smith, C. C.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

Song, W.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

Stemme, E.

P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements,” J. Microelectromech. Syst. 6(2), 119–125 (1997).
[CrossRef]

Stemme, G.

P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements,” J. Microelectromech. Syst. 6(2), 119–125 (1997).
[CrossRef]

Sun, Y.

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94(24), 241109 (2009).
[CrossRef]

Suter, J. D.

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94(24), 241109 (2009).
[CrossRef]

Tai, Y.

Y. Xu, C. Chiu, F. Jiang, Q. Lin, and Y. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A Phys. 121, 253–261 (2005).
[CrossRef]

Thorsen, T.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[CrossRef]

Tomljenovic-Hanic, S.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

Unger, M. A.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[CrossRef]

Vasdekis, A. E.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[CrossRef]

Waldeisen, J. R.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[CrossRef] [PubMed]

Wu, X.

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94(24), 241109 (2009).
[CrossRef]

Xiao, S.

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

Xu, Y.

Y. Xu, C. Chiu, F. Jiang, Q. Lin, and Y. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A Phys. 121, 253–261 (2005).
[CrossRef]

Yamada, M.

M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76(4), 895–899 (2004).
[CrossRef] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Zamek, S.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. Yamada and M. Seki, “Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices,” Anal. Chem. 76(4), 895–899 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

W. Song and D. Psaltis, “Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett. 96(8), 081101 (2010).
[CrossRef]

X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett. 94(24), 241109 (2009).
[CrossRef]

F. B. Arango, M. B. Christiansen, M. Gersborg-Hansen, and A. Kristensen, “Optofluidic tuning of photonic crystal band edge lasers,” Appl. Phys. Lett. 91(22), 223503 (2007).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[CrossRef]

C. Karnutsch, C. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O’Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009).
[CrossRef]

J. Microelectromech. Syst. (1)

P. Enoksson, G. Stemme, and E. Stemme, “A silicon resonant sensor structure for Coriolis mass-flow measurements,” J. Microelectromech. Syst. 6(2), 119–125 (1997).
[CrossRef]

Lab Chip (2)

D. S. Chang, S. M. Langelier, and M. A. Burns, “An electronic Venturi-based pressure microregulator,” Lab Chip 7(12), 1791–1799 (2007).
[CrossRef] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab Chip 7(10), 1303–1308 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. Monat, P. Domachuk, and D. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Hilty, E. E. McDonnell, J. Granwehr, K. L. Pierce, S. I. Han, and A. Pines, “Microfluidic gas-flow profiling using remote-detection NMR,” Proc. Natl. Acad. Sci. U.S.A. 102(42), 14960–14963 (2005).
[CrossRef] [PubMed]

Science (1)

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[CrossRef]

Sens. Actuators A Phys. (2)

S. Li, J. C. Day, J. J. Park, C. P. Cadou, and R. Ghodssi, “A fast-response microfluidic gas concentrating device for environmental sensing,” Sens. Actuators A Phys. 136(1), 69–79 (2007).
[CrossRef]

Y. Xu, C. Chiu, F. Jiang, Q. Lin, and Y. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A Phys. 121, 253–261 (2005).
[CrossRef]

Other (1)

R. W. Miller, Flow Measurement Engineering Handbook, 3rd ed. (McGraw-Hill, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The structure of optical chip including the microfluidic channel and optical cavities.

Fig. 2
Fig. 2

The cross-section view and working principle of the optical cavity. Bottom picture shows the corresponding interference image on microscope.

Fig. 3
Fig. 3

The schematic of the Venturi tube for measuring the flow rate.

Fig. 4
Fig. 4

An example image of the chip recorded on microscope.

Fig. 5
Fig. 5

The calibration results of the cavity P1. (a) The normalized average intensity at the center of the cavity versus the pressure. (b) The corresponding air gap size at the center versus the pressure.

Fig. 6
Fig. 6

The plot of the measured value of P 1 ( P 1 P 2 ) versus air mass flow rate. The inset pictures are the representative images recorded at each flow rate.

Fig. 7
Fig. 7

The plot of the measurement error versus different inlet pressure at each flow rate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( 4 d π λ + π ) ,
Q = k Δ P ρ 1 ,
Q = k Δ P P 1 .

Metrics