Abstract

Several methods are now available for single-shot measurement of the complex field (amplitude and phase profiles) of optical waveforms with resolutions down to the sub-picosecond range. As a main critical limitation, all these techniques exhibit measurement update rates typically slower than a few Hz. It would be very challenging to directly upgrade the update rate of any of these available methods beyond a few kHz. By combining spectral interferometry with dispersion-induced real-time optical Fourier transformation, here we demonstrate single-shot complex-field measurements of optical waveforms with a resolution of ~400 fs over a record length as long as ~350 ps, corresponding to a large record-length-to-resolution ratio of ~900. This performance is achieved at a measurement update rate of ~17 MHz, i.e. at least one thousand times faster than with any previous single-shot complex-field THz-bandwidth optical signal characterization method.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Quantum Electron. 12(4), 843–858 (2006).
    [Crossref]
  2. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [Crossref] [PubMed]
  3. T. J. Ahn, Y. Park, and J. Azaña, “Fast and accurate group delay ripple measurement technique for ultralong chirped fiber Bragg gratings,” Opt. Lett. 32(18), 2674–2676 (2007).
    [Crossref] [PubMed]
  4. Y. Park, T. J. Ahn, and J. Azaña, “Real-time complex temporal response measurements of ultrahigh-speed optical modulators,” Opt. Express 17(3), 1734–1745 (2009).
    [Crossref] [PubMed]
  5. R. T. Schermer, F. Bucholtz, C. A. Villarruel, J. Gil Gil, T. D. Andreadis, and K. J. Williams, “Investigation of electrooptic modulator disruption by microwave-induced transients,” Opt. Express 17(25), 22586–22602 (2009).
    [Crossref]
  6. H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” J. Lightwave Technol. 28(3), 254–261 (2010).
    [Crossref]
  7. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  8. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [Crossref] [PubMed]
  9. I. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1(2), 308–437 (2009).
    [Crossref]
  10. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
    [Crossref]
  11. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
    [Crossref] [PubMed]
  12. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
    [Crossref] [PubMed]
  13. M. E. Anderson, A. Monmayrant, S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Phys. Lett. 5(4), 259–266 (2008).
    [Crossref]
  14. C. Dorrer and I. Kang, “Highly sensitive direct characterization of femtosecond pulses by electro-optic spectral shearing interferometry,” Opt. Lett. 28(6), 477–479 (2003).
    [Crossref] [PubMed]
  15. J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, “Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry,” Opt. Lett. 31(23), 3523–3525 (2006).
    [Crossref] [PubMed]
  16. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006).
    [Crossref] [PubMed]
  17. V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “Single shot amplitude and phase characterization of optical arbitrary waveforms,” Opt. Express 17(16), 14434–14443 (2009).
    [Crossref] [PubMed]
  18. N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
    [Crossref] [PubMed]
  19. L. Lepetit, G. Chériaux, and M. Joffre, “Linear technique of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995).
    [Crossref]
  20. Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33(11), 983–985 (1997).
    [Crossref]
  21. J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
    [Crossref]
  22. Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
    [Crossref] [PubMed]
  23. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [Crossref]
  24. R. M. Fortenberry, W. V. Sorin, H. Lin, and S. A. Newton, “Low-power ultrashort optical pulse characterization using linear dispersion,” in Conference on Optical Fiber Communication, 290-291 (1997).
  25. C. Dorrer, “Chromatic dispersion characterization by direct instantaneous frequency measurement,” Opt. Lett. 29(2), 204–206 (2004).
    [Crossref] [PubMed]
  26. T. J. Ahn, Y. Park, and J. Azaña, “Improved optical pulse characterization based on feedback-controlled Hilbert transformation temporal interferometry,” IEEE Photon. Technol. Lett. 20(7), 475–477 (2008).
    [Crossref]
  27. C. Dorrer, “Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning,” Opt. Lett. 31(4), 540–542 (2006).
    [Crossref] [PubMed]
  28. http://www.thorlabs.com/NewGroupPage9_PF.cfm?Guide=10&Category_ID=219&ObjectGroup_ID=2005
  29. S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Express 15(23), 15129–15146 (2007).
    [Crossref] [PubMed]

2010 (2)

H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” J. Lightwave Technol. 28(3), 254–261 (2010).
[Crossref]

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

2009 (7)

2008 (4)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

M. E. Anderson, A. Monmayrant, S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Phys. Lett. 5(4), 259–266 (2008).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

T. J. Ahn, Y. Park, and J. Azaña, “Improved optical pulse characterization based on feedback-controlled Hilbert transformation temporal interferometry,” IEEE Photon. Technol. Lett. 20(7), 475–477 (2008).
[Crossref]

2007 (4)

2006 (4)

2004 (1)

2003 (1)

2000 (1)

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

1997 (1)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33(11), 983–985 (1997).
[Crossref]

1995 (1)

1993 (1)

Ahn, T. J.

Akturk, S.

Anderson, M. E.

M. E. Anderson, A. Monmayrant, S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Phys. Lett. 5(4), 259–266 (2008).
[Crossref]

Andreadis, T. D.

Azaña, J.

Begishev, I. A.

Blais, S.

Bowlan, P.

Bromage, J.

Bucholtz, F.

Chan, L. Y.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33(11), 983–985 (1997).
[Crossref]

Chériaux, G.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Dorrer, C.

Fontaine, N. K.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Gabolde, P.

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Gil Gil, J.

Goda, K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Gorza, S. P.

M. E. Anderson, A. Monmayrant, S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Phys. Lett. 5(4), 259–266 (2008).
[Crossref]

Heritage, J. P.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

Jalali, B.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Joffre, M.

Kane, D. J.

Kang, I.

Kieffer, J. C.

Kim, D. Y.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Leaird, D. E.

Lepetit, L.

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

McGresham, K.

Monmayrant, A.

M. E. Anderson, A. Monmayrant, S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Phys. Lett. 5(4), 259–266 (2008).
[Crossref]

Moon, S.

Muriel, M. A.

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

Park, Y.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Schermer, R. T.

Scott, R. P.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

Shreenath, A.

Soares, F. M.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Solli, D. R.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Supradeepa, V. R.

Tong, Y. C.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33(11), 983–985 (1997).
[Crossref]

Trebino, R.

Tsang, H. K.

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33(11), 983–985 (1997).
[Crossref]

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Turner-Foster, A. C.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Usechak, N. G.

Villarruel, C. A.

Walmsley, I.

Walmsley, I. A.

M. E. Anderson, A. Monmayrant, S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Phys. Lett. 5(4), 259–266 (2008).
[Crossref]

Wang, C.

Wasylczyk, P.

M. E. Anderson, A. Monmayrant, S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Phys. Lett. 5(4), 259–266 (2008).
[Crossref]

Weiner, A. M.

Williams, K. J.

Xia, H.

Yao, J.

Yoo, S. J. B.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

Zhou, L.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Zuegel, J. D.

Adv. Opt. Photon. (1)

Electron. Lett. (1)

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33(11), 983–985 (1997).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[Crossref]

C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Quantum Electron. 12(4), 843–858 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. J. Ahn, Y. Park, and J. Azaña, “Improved optical pulse characterization based on feedback-controlled Hilbert transformation temporal interferometry,” IEEE Photon. Technol. Lett. 20(7), 475–477 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

M. E. Anderson, A. Monmayrant, S. P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Phys. Lett. 5(4), 259–266 (2008).
[Crossref]

Nat. Photonics (2)

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Nature (3)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Opt. Express (8)

Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
[Crossref] [PubMed]

P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006).
[Crossref] [PubMed]

V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “Single shot amplitude and phase characterization of optical arbitrary waveforms,” Opt. Express 17(16), 14434–14443 (2009).
[Crossref] [PubMed]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

Y. Park, T. J. Ahn, and J. Azaña, “Real-time complex temporal response measurements of ultrahigh-speed optical modulators,” Opt. Express 17(3), 1734–1745 (2009).
[Crossref] [PubMed]

R. T. Schermer, F. Bucholtz, C. A. Villarruel, J. Gil Gil, T. D. Andreadis, and K. J. Williams, “Investigation of electrooptic modulator disruption by microwave-induced transients,” Opt. Express 17(25), 22586–22602 (2009).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[Crossref] [PubMed]

S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Express 15(23), 15129–15146 (2007).
[Crossref] [PubMed]

Opt. Lett. (6)

Other (2)

R. M. Fortenberry, W. V. Sorin, H. Lin, and S. A. Newton, “Low-power ultrashort optical pulse characterization using linear dispersion,” in Conference on Optical Fiber Communication, 290-291 (1997).

http://www.thorlabs.com/NewGroupPage9_PF.cfm?Guide=10&Category_ID=219&ObjectGroup_ID=2005

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the proposed linear interferometry technique for real-time, single-shot complex-field characterization of optical signals. The measurement of two consecutive different optical waveforms is represented to illustrate the ultrahigh update rate capability offered by this method.

Fig. 2
Fig. 2

Experimental setup used for demonstration of the proposed real-time and single-shot complex-field optical signal measurement method, specifically illustrating the use of a balanced temporal interleaving scheme to physically suppress the DC component of the measured interference pattern.

Fig. 3
Fig. 3

Result of a real-time and single-shot measurement of an optical waveform (SUT) composed by two sub-picosecond (FWHM time-width ~600-fs) Gaussian-like pulses delayed from each other by ~336-ps. The plot in the inset shows the result of real-time and single-shot measurements of various individual sub-picosecond Gaussian-like pulses with different delays, ranging from 4ps to 350ps, with respect to the corresponding reference pulse. The presented plots show the recovered time intensity profiles (in normalized unit (n.u.)) of the SUTs (the recovered phase profile for each pulse was nearly linear and is not shown here).

Fig. 4
Fig. 4

Real-time and single-shot complex-field characterization of an interference optical signal (SUT) having a time-bandwidth product of ~900: Recovered amplitude (a) and phase (b) time-domain profiles of the experimentally measured SUT (blue, solid) compared to the theoretically simulated phase profile (red, dashed). Insets are zoomed plots over the time interval between 210 ps to 220 ps. The measured spectral amplitude of the optical SUT is plotted in the inset of (a).

Fig. 5
Fig. 5

(a) Experimental setup for generating rapidly-changing ultrafast optical signals by intensity modulation of dispersed broadband pulses using an EOM driven by a synchronized train of electronic pulses in which the DC bias level is rapidly swept (the bias is driven by a 1.6-MHz electrical sinusoids). Amplitude (b) and phase (c) time profiles of 30 rapidly-changing ultrafast waveforms as measured at the EOM output with an update rate of ~17 MHz, expanding over a total duration of ~1.773μs. Results corresponding to the individual characterization of 3 of these ultrafast waveforms at the measurement times of 236.4 ns, 354.6 ns and 827.4 ns are plotted in (d).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S I ( ω ) = | R ( ω ) + E ( ω ) × e j ω τ | 2                             = | R ( ω ) | 2 + | E ( ω ) | 2 background signals + 2     Re { R * ( ω ) × E ( ω ) × e j ω τ } interference part                             =                       S I B ( ω )                           +                                             S I I ( ω )
E ( ω ) = [ Θ ( t τ ) × 1 [ S I ( ω ) ] ] e j ω τ R * ( ω )
S I ( ω ) + = 0.5 | R ( ω ) + E ( ω ) × e j ω τ | 2                                   = 0.5 | R ( ω ) | 2 + 0.5 | E ( ω ) | 2 +     Re { R * ( ω ) × E ( ω ) × e j ω τ } ,
S I ( ω ) = 0.5 | R ( ω ) E ( ω ) × e j ω τ | 2                                   = 0.5 | R ( ω ) | 2 + 0.5 | E ( ω ) | 2     Re { R * ( ω ) × E ( ω ) × e j ω τ }
S I ( ω ) = S I + ( ω ) + S I ( ω ) e j ω T / 2
S I s t r e c h e d ( t ) = S I ( ω ) | ω = t / Φ ¨ 0 = S I + ( t / Φ ¨ 0 ) + S I ( ( t T / 2 ) / Φ ¨ 0 )
S I I ( t ) = S I + ( t / Φ ¨ 0 ) S I ( t / Φ ¨ 0 )                                       = 2 Re { R * ( ω ) × E ( ω ) × e j ω τ }

Metrics