Abstract

A metamaterial-liquid crystal cell structure is fabricated with the metamaterial as one of the liquid crystal alignment layers. Nano-sized double-split ring resonator in the metamaterial accommodates two distinct resonances in the near infrared regime. By adopting an azo-nematic liquid crystal in a twisted nematic liquid crystal cell structure, a photo-isomerization process is utilized to achieve an optical switching of light transmissions between two resonances. A single device of the metamaterial-liquid crystal cell structure has a potential application in the photonic switching in optical fiber telecommunications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582 (2010).
    [CrossRef] [PubMed]
  2. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
    [CrossRef] [PubMed]
  3. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
    [CrossRef] [PubMed]
  4. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
    [CrossRef] [PubMed]
  5. H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
    [CrossRef]
  6. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
    [CrossRef]
  7. X. Wang, D.-H. Kwon, D. Werner, I.-C. Khoo, A. Kildishev, and V. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
    [CrossRef]
  8. S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
    [CrossRef]
  9. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, Hoboken, New Jersey, 2007), 2nd ed.
  10. W. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15, 1639 (2007).
    [CrossRef] [PubMed]
  11. B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
    [CrossRef] [PubMed]
  12. B. Kang, H. Choi, M.-Y. Jeong, and J. W. Wu, “Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal,” J. Opt. Soc. Am. B 27, 204 (2010).
    [CrossRef]
  13. T. Ikeda, and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873 (1995).
    [CrossRef] [PubMed]
  14. U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic lc materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454, 235 (2006).
    [CrossRef]

2010 (4)

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
[CrossRef] [PubMed]

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

B. Kang, H. Choi, M.-Y. Jeong, and J. W. Wu, “Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal,” J. Opt. Soc. Am. B 27, 204 (2010).
[CrossRef]

2009 (3)

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[CrossRef] [PubMed]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

2008 (1)

H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
[CrossRef]

2007 (3)

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

X. Wang, D.-H. Kwon, D. Werner, I.-C. Khoo, A. Kildishev, and V. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

W. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15, 1639 (2007).
[CrossRef] [PubMed]

2006 (1)

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic lc materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454, 235 (2006).
[CrossRef]

1995 (1)

T. Ikeda, and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873 (1995).
[CrossRef] [PubMed]

Averitt, R.

H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
[CrossRef]

Averitt, R. D.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[CrossRef] [PubMed]

Azad, A.

H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
[CrossRef]

Basov, D. N.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Buckingham, R.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
[CrossRef] [PubMed]

Bunning, T. J.

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic lc materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454, 235 (2006).
[CrossRef]

Chae, B.-G.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Chen, H.-T.

H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
[CrossRef]

Chen, S. W. Y.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
[CrossRef] [PubMed]

Chettiar, U.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Choi, E.

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

Choi, H.

B. Kang, H. Choi, M.-Y. Jeong, and J. W. Wu, “Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal,” J. Opt. Soc. Am. B 27, 204 (2010).
[CrossRef]

de Groot, P.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
[CrossRef] [PubMed]

Drachev, V.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Driscoll, T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Fan, K.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[CrossRef] [PubMed]

Fedotov, V. A.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
[CrossRef] [PubMed]

Hong, T.

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

Hrozhyk, U.

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic lc materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454, 235 (2006).
[CrossRef]

Ikeda, T.

T. Ikeda, and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873 (1995).
[CrossRef] [PubMed]

Jeong, M.-Y.

B. Kang, H. Choi, M.-Y. Jeong, and J. W. Wu, “Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal,” J. Opt. Soc. Am. B 27, 204 (2010).
[CrossRef]

Jokerst, N.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Kang, B.

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

B. Kang, H. Choi, M.-Y. Jeong, and J. W. Wu, “Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal,” J. Opt. Soc. Am. B 27, 204 (2010).
[CrossRef]

Kang, L.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Khoo, I.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Khoo, I.-C.

X. Wang, D.-H. Kwon, D. Werner, I.-C. Khoo, A. Kildishev, and V. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Kildishev, A.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

X. Wang, D.-H. Kwon, D. Werner, I.-C. Khoo, A. Kildishev, and V. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Kim, B.-J.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Kim, E.

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

Kim, H.-T.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Kim, J.

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

Kwon, D.-H.

X. Wang, D.-H. Kwon, D. Werner, I.-C. Khoo, A. Kildishev, and V. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Lee, H.-H.

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

Lee, Y.-W.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

O’Hara, J.

H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
[CrossRef]

Padilla, W.

H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
[CrossRef]

W. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15, 1639 (2007).
[CrossRef] [PubMed]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[CrossRef] [PubMed]

Palit, S.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Serak, S.

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic lc materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454, 235 (2006).
[CrossRef]

Shalaev, V.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

X. Wang, D.-H. Kwon, D. Werner, I.-C. Khoo, A. Kildishev, and V. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Shi, J. H.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
[CrossRef] [PubMed]

Shrekenhamer, D.

H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
[CrossRef]

Smith, D. R.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[CrossRef] [PubMed]

Tabiryan, N.

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic lc materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454, 235 (2006).
[CrossRef]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[CrossRef] [PubMed]

Taylor, A.

H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
[CrossRef]

Tsiatmas, A.

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
[CrossRef] [PubMed]

Tsutsumi, O.

T. Ikeda, and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873 (1995).
[CrossRef] [PubMed]

Ventra, M. D.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

Wang, X.

X. Wang, D.-H. Kwon, D. Werner, I.-C. Khoo, A. Kildishev, and V. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Werner, D.

X. Wang, D.-H. Kwon, D. Werner, I.-C. Khoo, A. Kildishev, and V. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

Woo, J.

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

Wu, J. W.

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

B. Kang, H. Choi, M.-Y. Jeong, and J. W. Wu, “Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal,” J. Opt. Soc. Am. B 27, 204 (2010).
[CrossRef]

Xiao, S.

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Zhang, X.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[CrossRef] [PubMed]

Zhao, Q.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
[CrossRef] [PubMed]

Zhou, J.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007).
[CrossRef]

X. Wang, D.-H. Kwon, D. Werner, I.-C. Khoo, A. Kildishev, and V. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

S. Xiao, U. Chettiar, A. Kildishev, V. Drachev, I. Khoo, and V. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

B. Kang, H. Choi, M.-Y. Jeong, and J. W. Wu, “Effective medium analysis for optical control of laser tuning in a mixture of azo-nematics and cholesteric liquid crystal,” J. Opt. Soc. Am. B 27, 204 (2010).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic lc materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 454, 235 (2006).
[CrossRef]

Nat. Photonics (1)

H.-T. Chen, J. O’Hara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).
[CrossRef]

Opt. Express (3)

V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, S. W. Y. Chen, and N. I. Zheludev, “Temperature control of fano resonances and transmission in superconducting metamaterials,” Opt. Express 18, 9015 (2010).
[CrossRef] [PubMed]

W. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15, 1639 (2007).
[CrossRef] [PubMed]

B. Kang, E. Choi, H.-H. Lee, E. Kim, J. Woo, J. Kim, T. Hong, J. Kim, and J. W. Wu, “Polarization angle control of coherent coupling in metamaterial superlattice for closed mode excitation,” Opt. Express 18, 11552 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[CrossRef] [PubMed]

Science (3)

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518 (2009).
[CrossRef] [PubMed]

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582 (2010).
[CrossRef] [PubMed]

T. Ikeda, and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268, 1873 (1995).
[CrossRef] [PubMed]

Other (1)

B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, Hoboken, New Jersey, 2007), 2nd ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagrams of metamaterial-liquid crystal cell structure are shown (a) before and (c) after UV irradiation, along with the transmission spectrum (b) before and (d) after UV irradiation.

Fig. 2.
Fig. 2.

(a) Schematic diagram of metamaterial, (b) scanning electron microscope picture of metamaterial, (c) transmission spectrum of metamaterials as a function of the angle θ, (d)&(e) electric field distributions and (f)&(g) surface current density schematics of plasmonic resonance in H- & L-oscillators are shown.

Fig. 3.
Fig. 3.

The change in light transmission of twisted azo-nematic liquid crystal cell is shown as a function of UV irradiation time. The inset picture shows the transmission change in the twisted azo-nematics liquid crystal cell masked with a ’TN’ letter aperture before and after UV irradiation in crossed- and parallel polarizers configurations.

Fig. 4.
Fig. 4.

The changes in the transmission in H-(red curve) and L-(black curve) oscillators are shown as a function of the UV irradiation time. Δ refers to the amount of change incurred by an optical control.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p L = α L E L , p H = α H E H .
( p x p y ) = ( α L 0 0 α H ) ( E cos θ E sin θ ) .
p ( ω L ) = x ̂ N α L E cos θ , p ( ω H ) = y ̂ N α H E sin θ .

Metrics