Abstract

We study the emission properties of electrically pumped triangular-shaped microlasers with rounded corners. We find no signs of directional emission for the relatively large cavities (dimension ~ 100µm) used in our experiments, in full agreement with ray simulation results. The broad emission characteristics that we observe can be fine-tuned by adjusting the resonator geometry as is verified through simulations which might prove useful for applications in optical devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839 (2003).
    [CrossRef] [PubMed]
  2. J. Wiersig, and M. Hentschel, “Combining Directional Light Output and Ultralow Loss in Deformed Microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
    [CrossRef] [PubMed]
  3. C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
    [CrossRef]
  4. Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
    [CrossRef]
  5. J. Wiersig, and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73, 031802 (2006).
    [CrossRef]
  6. G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003) was the first reference on this topic, see also Refs. [2–6] in Ref. [8] below.
    [CrossRef]
  7. R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007).
    [CrossRef]
  8. M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express 17, 10335–10343 (2009).
    [CrossRef] [PubMed]
  9. M. Hentschel, and T.-Y. Kwon, “Designing and understanding directional emission from spiral microlasers,” Opt. Lett. 34, 163–165 (2009).
    [CrossRef] [PubMed]
  10. M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and Ch.-M. Kim, “Unidirectional lasing from a microcavity with a rounded isosceles triangle shape,” Opt. Lett. 29, 2758–2760 (2004).
    [CrossRef] [PubMed]
  11. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
    [CrossRef]
  12. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
    [CrossRef]
  13. T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical Phase Space Revealed by Coherent Light,” Phys. Rev. Lett. 98, 033902 (2007).
    [CrossRef] [PubMed]

2009 (4)

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express 17, 10335–10343 (2009).
[CrossRef] [PubMed]

M. Hentschel, and T.-Y. Kwon, “Designing and understanding directional emission from spiral microlasers,” Opt. Lett. 34, 163–165 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Wiersig, and M. Hentschel, “Combining Directional Light Output and Ultralow Loss in Deformed Microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

2007 (2)

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical Phase Space Revealed by Coherent Light,” Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Wiersig, and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73, 031802 (2006).
[CrossRef]

2004 (2)

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and Ch.-M. Kim, “Unidirectional lasing from a microcavity with a rounded isosceles triangle shape,” Opt. Lett. 29, 2758–2760 (2004).
[CrossRef] [PubMed]

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
[CrossRef]

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839 (2003).
[CrossRef] [PubMed]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003) was the first reference on this topic, see also Refs. [2–6] in Ref. [8] below.
[CrossRef]

Audet, R.

M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express 17, 10335–10343 (2009).
[CrossRef] [PubMed]

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Belkin, M. A.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express 17, 10335–10343 (2009).
[CrossRef] [PubMed]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Ben-Messaoud, T.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
[CrossRef]

Capasso, F.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express 17, 10335–10343 (2009).
[CrossRef] [PubMed]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Chang, R. K.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003) was the first reference on this topic, see also Refs. [2–6] in Ref. [8] below.
[CrossRef]

Chern, G. D.

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003) was the first reference on this topic, see also Refs. [2–6] in Ref. [8] below.
[CrossRef]

Diehl, L.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Douglas Stone, A.

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003) was the first reference on this topic, see also Refs. [2–6] in Ref. [8] below.
[CrossRef]

Edamura, T.

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Fan, J. A.

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Fukushima, T.

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical Phase Space Revealed by Coherent Light,” Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

Harayama, T.

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical Phase Space Revealed by Coherent Light,” Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

Hentschel, M.

M. Hentschel, and T.-Y. Kwon, “Designing and understanding directional emission from spiral microlasers,” Opt. Lett. 34, 163–165 (2009).
[CrossRef] [PubMed]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express 17, 10335–10343 (2009).
[CrossRef] [PubMed]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

J. Wiersig, and M. Hentschel, “Combining Directional Light Output and Ultralow Loss in Deformed Microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical Phase Space Revealed by Coherent Light,” Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

J. Wiersig, and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73, 031802 (2006).
[CrossRef]

Johnson, N. M.

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003) was the first reference on this topic, see also Refs. [2–6] in Ref. [8] below.
[CrossRef]

Kan, H.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Kim, Ch.-M.

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and Ch.-M. Kim, “Unidirectional lasing from a microcavity with a rounded isosceles triangle shape,” Opt. Lett. 29, 2758–2760 (2004).
[CrossRef] [PubMed]

Kneissl, M.

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003) was the first reference on this topic, see also Refs. [2–6] in Ref. [8] below.
[CrossRef]

Kurdoglyan, M. S.

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and Ch.-M. Kim, “Unidirectional lasing from a microcavity with a rounded isosceles triangle shape,” Opt. Lett. 29, 2758–2760 (2004).
[CrossRef] [PubMed]

Kwon, T.-Y.

M. Hentschel, and T.-Y. Kwon, “Designing and understanding directional emission from spiral microlasers,” Opt. Lett. 34, 163–165 (2009).
[CrossRef] [PubMed]

M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express 17, 10335–10343 (2009).
[CrossRef] [PubMed]

Lee, B. G.

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Lee, S.-Y.

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and Ch.-M. Kim, “Unidirectional lasing from a microcavity with a rounded isosceles triangle shape,” Opt. Lett. 29, 2758–2760 (2004).
[CrossRef] [PubMed]

Lin, K.

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

Pflügl, C.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Rex, N. B.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
[CrossRef]

Rim, S.

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and Ch.-M. Kim, “Unidirectional lasing from a microcavity with a rounded isosceles triangle shape,” Opt. Lett. 29, 2758–2760 (2004).
[CrossRef] [PubMed]

Schwefel, H. G. L.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
[CrossRef]

Stone, A. D.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
[CrossRef]

Tanaka, T.

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical Phase Space Revealed by Coherent Light,” Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

Tureci, H. E.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
[CrossRef]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003) was the first reference on this topic, see also Refs. [2–6] in Ref. [8] below.
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839 (2003).
[CrossRef] [PubMed]

Wang, Q. J.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Wiersig, J.

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

J. Wiersig, and M. Hentschel, “Combining Directional Light Output and Ultralow Loss in Deformed Microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

J. Wiersig, and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73, 031802 (2006).
[CrossRef]

Yamanishi, M.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Yan, C.

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Yu, N.

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Zyss, J.

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

C. Yan, Q. J. Wang, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, F. Capasso, M. A. Belkin, T. Edamura, M. Yamanishi, and H. Kan, “Directional emission and universal far-field behavior from semiconductor lasers with limaçon shaped microcavity,” Appl. Phys. Lett. 94, 251101 (2009).
[CrossRef]

G. D. Chern, H. E. Tureci, A. Douglas Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003) was the first reference on this topic, see also Refs. [2–6] in Ref. [8] below.
[CrossRef]

R. Audet, M. A. Belkin, J. A. Fan, B. G. Lee, K. Lin, and F. Capasso, “Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators,” Appl. Phys. Lett. 91, 131106 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, and J. Zyss, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004).
[CrossRef]

N. J. Phys. (1)

Q. J. Wang, C. Yan, L. Diehl, M. Hentschel, J. Wiersig, N. Yu, C. Pflügl, M. A. Belkin, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Deformed microcavity quantum cascade lasers with directional emission,” N. J. Phys. 11, 125018 (2009) and references therein.
[CrossRef]

Nat. Photonics (1)

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express 17, 10335–10343 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

M. Hentschel, and T.-Y. Kwon, “Designing and understanding directional emission from spiral microlasers,” Opt. Lett. 34, 163–165 (2009).
[CrossRef] [PubMed]

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and Ch.-M. Kim, “Unidirectional lasing from a microcavity with a rounded isosceles triangle shape,” Opt. Lett. 29, 2758–2760 (2004).
[CrossRef] [PubMed]

Phys. Rev. A (1)

J. Wiersig, and M. Hentschel, “Unidirectional light emission from high-Q modes in optical microcavities,” Phys. Rev. A 73, 031802 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

J. Wiersig, and M. Hentschel, “Combining Directional Light Output and Ultralow Loss in Deformed Microdisks,” Phys. Rev. Lett. 100, 033901 (2008).
[CrossRef] [PubMed]

T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama, “Classical Phase Space Revealed by Coherent Light,” Phys. Rev. Lett. 98, 033902 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Micrograph of an experimental structure. (b) Schematics of the triangular cavity geometry. The parameters used in the experiment are D=150µm, b=180µm, h=360µm, rA =51µm, rB =45µm, similar to those used in Ref. [10]. The far-field angle ϕ is indicated on the right.

Fig. 2.
Fig. 2.

(a) Spectrum of the lasing cavity at 11% (top) above the lasing threshold current. The emission wavelength is ~ 10µm in pulsed mode operation at room temperature. (b) Optical output power versus pump current measured at far-field angle ϕ = 0° as a function of the pump current. The onset of lasing beyond a threshold current of about 0.53 A is clearly visible.

Fig. 3.
Fig. 3.

(a) Far-field characteristics of triangular QCLs for two different pump currents. The black (red) line is for pumping current 750 mA (870 mA). Light is predominantly emitted towards the sharper side of the triangular structure. The axial symmetry of the cavity is seen to be slightly imperfect but very simlar for both pump currents. Both far-field intensity profiles are normalized to their maximum values. (b) Comparison of experimental and ray-simulation data, both normalized.

Fig. 4.
Fig. 4.

Ray-simulation result for the radial far-field light intensity distribution for triangular cavities (arbitrary, but normalized units). The geometry in panel (a) is that used in the experiment, see also Fig. 1(b). The green lines mark the border of this “master” device and are repeated as a guide to the eye in the other panels. In panels (b–d), we study the influence of fabrication imperfections on the far-field pattern. A smaller radius rA , panel (b), increases the overall far-field intensity since light emerges from this side of the cavity and the more easily the smaller the radius of curvature is. In panel (c) and (d), we show the results for vertically compressed and stretched structures, respectively. Lobes are somewhat more prominent in the compressed resonator shape, but all four geometries fully show the characteristics of the experimental result: A more or less homogeneous light output into about one third (120°) of the resonator plane.

Metrics