Abstract

A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO3 crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
    [CrossRef]
  2. T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
    [CrossRef] [PubMed]
  3. R. Guo, K. Akiyama, H. Minamide, T. Ikari, and H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
    [CrossRef]
  4. D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009).
    [CrossRef] [PubMed]
  5. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [CrossRef]
  6. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
    [CrossRef]
  7. W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
    [CrossRef]
  8. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
    [CrossRef] [PubMed]
  9. H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
    [CrossRef]
  10. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
    [CrossRef] [PubMed]
  11. W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
    [CrossRef]
  12. M. J. Khan, J. C. Chen, and S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007).
    [CrossRef] [PubMed]
  13. R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
    [CrossRef]
  14. H. Minamide, J. Zhang, R. Guo, and H. Ito, “Tunable Terahertz-wave detection using a DAST optical up-conversion,” M5E04, IRMMW-THz 2009, Busan.
  15. J. E. Midwinter and J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
    [CrossRef]
  16. G. D. Boyd, T. J. Bridges, and E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
    [CrossRef]
  17. A. A. Babin, V. N. Petryakov, and G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
    [CrossRef]
  18. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
    [CrossRef]

2009 (1)

2008 (2)

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

2007 (2)

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

M. J. Khan, J. C. Chen, and S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007).
[CrossRef] [PubMed]

2006 (3)

W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, and H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

2005 (1)

2003 (1)

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[CrossRef]

1999 (1)

1996 (2)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

1983 (1)

A. A. Babin, V. N. Petryakov, and G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

1968 (1)

G. D. Boyd, T. J. Bridges, and E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

1967 (1)

J. E. Midwinter and J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
[CrossRef]

Akiyama, K.

R. Guo, K. Akiyama, H. Minamide, T. Ikari, and H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

Avetisyan, Y.

Babin, A. A.

A. A. Babin, V. N. Petryakov, and G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

Beigang, R.

Boyd, G. D.

G. D. Boyd, T. J. Bridges, and E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

Bridges, T. J.

G. D. Boyd, T. J. Bridges, and E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

Burkhardt, E.

G. D. Boyd, T. J. Bridges, and E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

Chen, J. C.

Ding, Y. J.

W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[CrossRef]

Fernelius, N.

W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

Freidman, G. I.

A. A. Babin, V. N. Petryakov, and G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

Fujiwara, M.

Guo, R.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, and H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

Hashimoto, H.

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Hopkins, F. K.

W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

Ikari, T.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, and H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

Ito, H.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, and H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Kaushik, S.

Kawase, K.

Khan, M. J.

Midwinter, J. E.

J. E. Midwinter and J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
[CrossRef]

Minamide, H.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, and H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

Miyamoto, K.

Mizuno, M.

Molter, D.

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Nawahara, A.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Ohno, S.

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

Petryakov, V. N.

A. A. Babin, V. N. Petryakov, and G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

Sasaki, Y.

Sato, M.

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Sato, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Shi, W.

W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[CrossRef]

Sohma, S.

Suizu, K.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Takahashi, H.

Taniuchi, T.

Tashiro, H.

Theuer, M.

Urata, Y.

Wada, S.

Warner, J.

J. E. Midwinter and J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Yamashita, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Yokoyama, H.

Zhang, X. B.

Appl. Phys. Lett. (7)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, and H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. D. Boyd, T. J. Bridges, and E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

J. Appl. Phys. (1)

J. E. Midwinter and J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Sov. J. Quantum Electron. (1)

A. A. Babin, V. N. Petryakov, and G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

Other (1)

H. Minamide, J. Zhang, R. Guo, and H. Ito, “Tunable Terahertz-wave detection using a DAST optical up-conversion,” M5E04, IRMMW-THz 2009, Busan.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical design for fast frequency tuning and achromatic THz-wave detection. (a) The optics in the pump beam. A variable-angle mirror, M0, and a 1:1 telescope device with two lenses were used. (b) The optics in the THz-wave beam. A pair of off-axis parabolic gold mirrors (PG1 and PG2) formed a 1:1 telescope device in the THz-wave beam. The inset shows the phase matching condition for THz-wave generation and detection: κ p = κ T + κ i ( u p ) .

Fig. 2
Fig. 2

The experimental setup used to achieve the frequency-agile, monochromatic THz-wave generation and detection.

Fig. 3
Fig. 3

(a) The temporal profiles of the up-converted signal at pump energy 7 mJ/pulse (45 MW/cm2) and THz-wave energy 8 pJ/pulse at 1.5 THz (the red line). The black line is the noise baseline. (b) The measured spectra of the up-converted signal.

Fig. 4
Fig. 4

(a) shows the measured spectra of the up-converted signal with the applied voltages of 0.4 V, 0.6 V, 0.8 V, and 1 V (from left to right) at the Galvano-optical beam scanner. The top horizontal axis shows the corresponding THz-wave frequency. (b) Spectra of the idler signal at the same applied voltages.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ p = κ T + κ i ( u p )

Metrics