Abstract

A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO3 crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
    [CrossRef]
  2. T. Ikari, X. B. Zhang, H. Minamide, H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
    [CrossRef] [PubMed]
  3. R. Guo, K. Akiyama, H. Minamide, T. Ikari, H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
    [CrossRef]
  4. D. Molter, M. Theuer, R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009).
    [CrossRef] [PubMed]
  5. A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [CrossRef]
  6. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
    [CrossRef]
  7. W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
    [CrossRef]
  8. Y. Sasaki, Y. Avetisyan, H. Yokoyama, H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
    [CrossRef] [PubMed]
  9. H. Ito, K. Suizu, T. Yamashita, A. Nawahara, T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
    [CrossRef]
  10. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
    [CrossRef] [PubMed]
  11. W. Shi, Y. J. Ding, N. Fernelius, F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
    [CrossRef]
  12. M. J. Khan, J. C. Chen, S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007).
    [CrossRef] [PubMed]
  13. R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
    [CrossRef]
  14. H. Minamide, J. Zhang, R. Guo, and H. Ito, “Tunable Terahertz-wave detection using a DAST optical up-conversion,” M5E04, IRMMW-THz 2009, Busan.
  15. J. E. Midwinter, J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
    [CrossRef]
  16. G. D. Boyd, T. J. Bridges, E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
    [CrossRef]
  17. A. A. Babin, V. N. Petryakov, G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
    [CrossRef]
  18. M. A. Piestrup, R. N. Fleming, R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
    [CrossRef]

2009

D. Molter, M. Theuer, R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009).
[CrossRef] [PubMed]

2008

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

2007

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

M. J. Khan, J. C. Chen, S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007).
[CrossRef] [PubMed]

2006

W. Shi, Y. J. Ding, N. Fernelius, F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

T. Ikari, X. B. Zhang, H. Minamide, H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

2005

Y. Sasaki, Y. Avetisyan, H. Yokoyama, H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

2003

W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[CrossRef]

1999

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

1996

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

1983

A. A. Babin, V. N. Petryakov, G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

1975

M. A. Piestrup, R. N. Fleming, R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

1968

G. D. Boyd, T. J. Bridges, E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

1967

J. E. Midwinter, J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
[CrossRef]

Akiyama, K.

R. Guo, K. Akiyama, H. Minamide, T. Ikari, H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

Avetisyan, Y.

Y. Sasaki, Y. Avetisyan, H. Yokoyama, H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

Babin, A. A.

A. A. Babin, V. N. Petryakov, G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

Beigang, R.

D. Molter, M. Theuer, R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009).
[CrossRef] [PubMed]

Boyd, G. D.

G. D. Boyd, T. J. Bridges, E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

Bridges, T. J.

G. D. Boyd, T. J. Bridges, E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

Burkhardt, E.

G. D. Boyd, T. J. Bridges, E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

Chen, J. C.

M. J. Khan, J. C. Chen, S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007).
[CrossRef] [PubMed]

Ding, Y. J.

W. Shi, Y. J. Ding, N. Fernelius, F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[CrossRef]

Fernelius, N.

W. Shi, Y. J. Ding, N. Fernelius, F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

Freidman, G. I.

A. A. Babin, V. N. Petryakov, G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

Fujiwara, M.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

Guo, R.

R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

Hashimoto, H.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

Heinz, T. F.

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Hopkins, F. K.

W. Shi, Y. J. Ding, N. Fernelius, F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

Ikari, T.

R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

T. Ikari, X. B. Zhang, H. Minamide, H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

Ito, H.

R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

T. Ikari, X. B. Zhang, H. Minamide, H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

Y. Sasaki, Y. Avetisyan, H. Yokoyama, H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Kaushik, S.

M. J. Khan, J. C. Chen, S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007).
[CrossRef] [PubMed]

Kawase, K.

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Khan, M. J.

M. J. Khan, J. C. Chen, S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007).
[CrossRef] [PubMed]

Midwinter, J. E.

J. E. Midwinter, J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
[CrossRef]

Minamide, H.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

T. Ikari, X. B. Zhang, H. Minamide, H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

Miyamoto, K.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

Mizuno, M.

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

Molter, D.

D. Molter, M. Theuer, R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009).
[CrossRef] [PubMed]

Nahata, A.

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Nawahara, A.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Ohno, S.

R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

Petryakov, V. N.

A. A. Babin, V. N. Petryakov, G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

Sasaki, Y.

Y. Sasaki, Y. Avetisyan, H. Yokoyama, H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

Sato, M.

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Sato, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Shi, W.

W. Shi, Y. J. Ding, N. Fernelius, F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[CrossRef]

Sohma, S.

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

Suizu, K.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Takahashi, H.

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

Taniuchi, T.

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Tashiro, H.

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

Theuer, M.

D. Molter, M. Theuer, R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009).
[CrossRef] [PubMed]

Urata, Y.

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

Wada, S.

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

Warner, J.

J. E. Midwinter, J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Yamashita, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Yokoyama, H.

Y. Sasaki, Y. Avetisyan, H. Yokoyama, H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

Zhang, X. B.

T. Ikari, X. B. Zhang, H. Minamide, H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Kawase, M. Sato, T. Taniuchi, H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

R. Guo, K. Akiyama, H. Minamide, T. Ikari, H. Ito, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 88, 091120 (2006).
[CrossRef]

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83(5), 848–850 (2003).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, F. K. Hopkins, “Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal,” Appl. Phys. Lett. 88(10), 101101 (2006).
[CrossRef]

R. Guo, S. Ohno, H. Minamide, T. Ikari, H. Ito, “Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process,” Appl. Phys. Lett. 93(2), 021106 (2008).
[CrossRef]

M. A. Piestrup, R. N. Fleming, R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–420 (1975).
[CrossRef]

IEEE J. Quantum Electron.

G. D. Boyd, T. J. Bridges, E. Burkhardt, “Up-conversion of 10.6 μ radiation to the visible and second harmonic generation in HgS,” IEEE J. Quantum Electron. 4(9), 515–519 (1968).
[CrossRef]

J. Appl. Phys.

J. E. Midwinter, J. Warner, “Up-Conversion of near infrared to visible radiation in Lithium-meta-Niobate,” J. Appl. Phys. 38(2), 519–523 (1967).
[CrossRef]

Jpn. J. Appl. Phys.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Opt. Express

D. Molter, M. Theuer, R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009).
[CrossRef] [PubMed]

T. Ikari, X. B. Zhang, H. Minamide, H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Y. Sasaki, Y. Avetisyan, H. Yokoyama, H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30(21), 2927–2929 (2005).
[CrossRef] [PubMed]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
[CrossRef]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef] [PubMed]

M. J. Khan, J. C. Chen, S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007).
[CrossRef] [PubMed]

Sov. J. Quantum Electron.

A. A. Babin, V. N. Petryakov, G. I. Freidman, “Use of stimulated scattering by polaritons in detection of submillimeter radiation,” Sov. J. Quantum Electron. 13(7), 958–960 (1983).
[CrossRef]

Other

H. Minamide, J. Zhang, R. Guo, and H. Ito, “Tunable Terahertz-wave detection using a DAST optical up-conversion,” M5E04, IRMMW-THz 2009, Busan.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical design for fast frequency tuning and achromatic THz-wave detection. (a) The optics in the pump beam. A variable-angle mirror, M0, and a 1:1 telescope device with two lenses were used. (b) The optics in the THz-wave beam. A pair of off-axis parabolic gold mirrors (PG1 and PG2) formed a 1:1 telescope device in the THz-wave beam. The inset shows the phase matching condition for THz-wave generation and detection: κ p = κ T + κ i ( u p ) .

Fig. 2
Fig. 2

The experimental setup used to achieve the frequency-agile, monochromatic THz-wave generation and detection.

Fig. 3
Fig. 3

(a) The temporal profiles of the up-converted signal at pump energy 7 mJ/pulse (45 MW/cm2) and THz-wave energy 8 pJ/pulse at 1.5 THz (the red line). The black line is the noise baseline. (b) The measured spectra of the up-converted signal.

Fig. 4
Fig. 4

(a) shows the measured spectra of the up-converted signal with the applied voltages of 0.4 V, 0.6 V, 0.8 V, and 1 V (from left to right) at the Galvano-optical beam scanner. The top horizontal axis shows the corresponding THz-wave frequency. (b) Spectra of the idler signal at the same applied voltages.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ p = κ T + κ i ( u p )

Metrics