Abstract

We use two different synthesis approaches for the preparation of TiO2 films in order to study their resulting third order optical nonlinearity, and its modification by the inclusion of Au nanoparticles in one of the samples. An ultrasonic spray pyrolysis method was used for preparing a TiO2 film in which we found two-photon absorption as a dominant nonlinear effect for 532 nm and 26 ps pulses; and a purely electronic nonlinearity at 830 nm for 80 fs pulses. A strong optical Kerr effect and the inhibition of the nonlinear optical absorption in 532 nm can be obtained for the first sample if Au nanoparticles embedded in a second TiO2 film prepared by a sol-gel technique are added to it. We used an optical Kerr gate, z-scan, a multi-wave mixing experiment and an input-output transmittance experiment for measuring the optical nonlinearities.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Weast, ed., Hand Book of Chemistry and Physics, 67th Edition, (CRC Press, Boca Raton, FL, 1986–1987), p. B-140.
  2. H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon, and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films,” Appl. Phys. Lett. 68(21), 2965–2967 (1996).
    [CrossRef]
  3. T. Houzouji, N. Saito, A. Kudo, and S. Takata, “Electroluminescence of TiO2 film and TiO2:Cu2+ film prepared by the sol-gel method,” Chem. Phys. Lett. 254(1-2), 109–113 (1996).
    [CrossRef]
  4. Z. Chen, P. Sana, J. Salami, and A. Rohatgi, “A Novel and Effective PECVD SiO2/SiN Antireflection Coating for Si Solar Cells,” IEEE Trans. Electron. Dev. 40(6), 1161–1165 (1993).
    [CrossRef]
  5. H. Kuster and J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70(1), 43–47 (1980).
    [CrossRef]
  6. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
    [CrossRef]
  7. K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518(4), 1174–1176 (2009).
    [CrossRef]
  8. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817 (1998).
    [CrossRef]
  9. P. Xiao-Niu, L. Min, Y. Liao, Z. Xian, and Z. Li, “Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films,” Chin. Phys. Lett. 25(11), 4171–4173 (2008).
    [CrossRef]
  10. H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell,” Jpn. J. Appl. Phys. 46(No. 4B), 2567–2570 (2007).
    [CrossRef]
  11. Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
    [CrossRef]
  12. C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334–339 (2005).
  13. G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Appl. Phys. Lett. 306(5-6), 348–352 (2003).
    [CrossRef]
  14. R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, and M. Grätzel, “The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells,” Nano Lett. 2(5), 507–511 (2002).
    [CrossRef]
  15. M. N. Patel, R. D. Williams, R. A. May, H. Uchida, K. J. Stevenson, and K. P. Johnston, “Electrophoretic Deposition of Au Nanocrystals inside Perpendicular Mesochannels of TiO2,” Chem. Mater. 20(19), 6029–6040 (2008).
    [CrossRef]
  16. L. Irimpan, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2,” J. Colloid Interface Sci. 324(1-2), 0648 (2008).
    [CrossRef]
  17. L. Li and S. Xiong-Rui, “Enhanced optical nonlinear absorption of graded Au–TiO2 composite films,” Chinese Phys. B 17(6), 2170–2174 (2008).
    [CrossRef]
  18. M. Kyoung and M. Lee, “Z-scan Studies on the Third-order Optical Nonlinearity of Au Nanoparticles Embedded in TiO2,” Bull. Korean Chem. Soc. 21(1), 26–28 (2000).
  19. C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
    [CrossRef] [PubMed]
  20. M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
    [CrossRef]
  21. L. Hua, Y. Guang, C. Ai-Ping, L. Yu-Hua, and L. Pei-Xiang, “Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties,” Chin. Phys. Lett. 25(11), 4135–4138 (2008).
    [CrossRef]
  22. H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22(9), 1923–1926 (2005).
    [CrossRef]
  23. C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
    [CrossRef]
  24. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  25. L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Ultra fast third-order non-linear response of amino-triazole donor-acceptor derivatives by optical Kerr effect,” Opt. Commun. 281(20), 5239–5243 (2008).
    [CrossRef]
  26. C. Torres-Torres, M. Trejo-Valdez, P. Santiago-Jacinto, and J. A. Reyes-Esqueda, ““Stimulated emission and optical third order nonlinearity in Li-doped nanorods,” J. hys,” Chem. Can. 113, 13515–13521 (2009).
  27. R. W. Boyd, Nonlinear Optics, (Academic Press, San Diego, 1992).
  28. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).
    [CrossRef]
  29. M. Trejo-Valdez, R. Torres-Martínez, N. Peréa-López, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the two-photon absorption to the third order nonlinearity of Au nanoparticles embedded in TiO2 films and in ethanol suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
    [CrossRef]
  30. A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
    [CrossRef] [PubMed]

2010 (1)

M. Trejo-Valdez, R. Torres-Martínez, N. Peréa-López, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the two-photon absorption to the third order nonlinearity of Au nanoparticles embedded in TiO2 films and in ethanol suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[CrossRef]

2009 (4)

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

C. Torres-Torres, M. Trejo-Valdez, P. Santiago-Jacinto, and J. A. Reyes-Esqueda, ““Stimulated emission and optical third order nonlinearity in Li-doped nanorods,” J. hys,” Chem. Can. 113, 13515–13521 (2009).

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518(4), 1174–1176 (2009).
[CrossRef]

2008 (9)

P. Xiao-Niu, L. Min, Y. Liao, Z. Xian, and Z. Li, “Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films,” Chin. Phys. Lett. 25(11), 4171–4173 (2008).
[CrossRef]

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[CrossRef]

M. N. Patel, R. D. Williams, R. A. May, H. Uchida, K. J. Stevenson, and K. P. Johnston, “Electrophoretic Deposition of Au Nanocrystals inside Perpendicular Mesochannels of TiO2,” Chem. Mater. 20(19), 6029–6040 (2008).
[CrossRef]

L. Irimpan, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2,” J. Colloid Interface Sci. 324(1-2), 0648 (2008).
[CrossRef]

L. Li and S. Xiong-Rui, “Enhanced optical nonlinear absorption of graded Au–TiO2 composite films,” Chinese Phys. B 17(6), 2170–2174 (2008).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

L. Hua, Y. Guang, C. Ai-Ping, L. Yu-Hua, and L. Pei-Xiang, “Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties,” Chin. Phys. Lett. 25(11), 4135–4138 (2008).
[CrossRef]

L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Ultra fast third-order non-linear response of amino-triazole donor-acceptor derivatives by optical Kerr effect,” Opt. Commun. 281(20), 5239–5243 (2008).
[CrossRef]

2007 (1)

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell,” Jpn. J. Appl. Phys. 46(No. 4B), 2567–2570 (2007).
[CrossRef]

2005 (2)

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334–339 (2005).

H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22(9), 1923–1926 (2005).
[CrossRef]

2003 (2)

M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
[CrossRef]

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Appl. Phys. Lett. 306(5-6), 348–352 (2003).
[CrossRef]

2002 (1)

R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, and M. Grätzel, “The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells,” Nano Lett. 2(5), 507–511 (2002).
[CrossRef]

2000 (1)

M. Kyoung and M. Lee, “Z-scan Studies on the Third-order Optical Nonlinearity of Au Nanoparticles Embedded in TiO2,” Bull. Korean Chem. Soc. 21(1), 26–28 (2000).

1998 (1)

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817 (1998).
[CrossRef]

1996 (2)

H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon, and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films,” Appl. Phys. Lett. 68(21), 2965–2967 (1996).
[CrossRef]

T. Houzouji, N. Saito, A. Kudo, and S. Takata, “Electroluminescence of TiO2 film and TiO2:Cu2+ film prepared by the sol-gel method,” Chem. Phys. Lett. 254(1-2), 109–113 (1996).
[CrossRef]

1993 (1)

Z. Chen, P. Sana, J. Salami, and A. Rohatgi, “A Novel and Effective PECVD SiO2/SiN Antireflection Coating for Si Solar Cells,” IEEE Trans. Electron. Dev. 40(6), 1161–1165 (1993).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).
[CrossRef]

1980 (1)

H. Kuster and J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70(1), 43–47 (1980).
[CrossRef]

Agostiano, A.

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

Ai-Ping, C.

L. Hua, Y. Guang, C. Ai-Ping, L. Yu-Hua, and L. Pei-Xiang, “Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties,” Chin. Phys. Lett. 25(11), 4135–4138 (2008).
[CrossRef]

Alonso, J. C.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

Anija, M.

M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
[CrossRef]

Cassano, T.

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

Cheang-Wong, J. C.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Chen, A.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Chen, Z.

Z. Chen, P. Sana, J. Salami, and A. Rohatgi, “A Novel and Effective PECVD SiO2/SiN Antireflection Coating for Si Solar Cells,” IEEE Trans. Electron. Dev. 40(6), 1161–1165 (1993).
[CrossRef]

Couris, S.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518(4), 1174–1176 (2009).
[CrossRef]

Crespo-Sosa, A.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Curri, M. L.

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

Ebert, J.

H. Kuster and J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70(1), 43–47 (1980).
[CrossRef]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).
[CrossRef]

Goossens, A.

R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, and M. Grätzel, “The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells,” Nano Lett. 2(5), 507–511 (2002).
[CrossRef]

Grätzel, M.

R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, and M. Grätzel, “The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells,” Nano Lett. 2(5), 507–511 (2002).
[CrossRef]

Guang, Y.

L. Hua, Y. Guang, C. Ai-Ping, L. Yu-Hua, and L. Pei-Xiang, “Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties,” Chin. Phys. Lett. 25(11), 4135–4138 (2008).
[CrossRef]

Ha, H. K.

H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon, and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films,” Appl. Phys. Lett. 68(21), 2965–2967 (1996).
[CrossRef]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Han, J. B.

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[CrossRef]

Hao, Z. H.

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[CrossRef]

He, J.

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Appl. Phys. Lett. 306(5-6), 348–352 (2003).
[CrossRef]

Houzouji, T.

T. Houzouji, N. Saito, A. Kudo, and S. Takata, “Electroluminescence of TiO2 film and TiO2:Cu2+ film prepared by the sol-gel method,” Chem. Phys. Lett. 254(1-2), 109–113 (1996).
[CrossRef]

Hua, L.

L. Hua, Y. Guang, C. Ai-Ping, L. Yu-Hua, and L. Pei-Xiang, “Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties,” Chin. Phys. Lett. 25(11), 4135–4138 (2008).
[CrossRef]

Iliopoulos, K.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518(4), 1174–1176 (2009).
[CrossRef]

Irimpan, L.

L. Irimpan, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2,” J. Colloid Interface Sci. 324(1-2), 0648 (2008).
[CrossRef]

Ishiwara, H.

H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon, and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films,” Appl. Phys. Lett. 68(21), 2965–2967 (1996).
[CrossRef]

Johnston, K. P.

M. N. Patel, R. D. Williams, R. A. May, H. Uchida, K. J. Stevenson, and K. P. Johnston, “Electrophoretic Deposition of Au Nanocrystals inside Perpendicular Mesochannels of TiO2,” Chem. Mater. 20(19), 6029–6040 (2008).
[CrossRef]

Kalogerakis, G.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518(4), 1174–1176 (2009).
[CrossRef]

Katsarakis, N.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518(4), 1174–1176 (2009).
[CrossRef]

Kim, B.-G.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell,” Jpn. J. Appl. Phys. 46(No. 4B), 2567–2570 (2007).
[CrossRef]

Koinuma, H.

H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon, and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films,” Appl. Phys. Lett. 68(21), 2965–2967 (1996).
[CrossRef]

Koudoumas, E.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518(4), 1174–1176 (2009).
[CrossRef]

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).
[CrossRef]

Krishnan, B.

L. Irimpan, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2,” J. Colloid Interface Sci. 324(1-2), 0648 (2008).
[CrossRef]

Kudo, A.

T. Houzouji, N. Saito, A. Kudo, and S. Takata, “Electroluminescence of TiO2 film and TiO2:Cu2+ film prepared by the sol-gel method,” Chem. Phys. Lett. 254(1-2), 109–113 (1996).
[CrossRef]

Kuster, H.

H. Kuster and J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70(1), 43–47 (1980).
[CrossRef]

Kwon, H.-W.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell,” Jpn. J. Appl. Phys. 46(No. 4B), 2567–2570 (2007).
[CrossRef]

Kyoung, M.

M. Kyoung and M. Lee, “Z-scan Studies on the Third-order Optical Nonlinearity of Au Nanoparticles Embedded in TiO2,” Bull. Korean Chem. Soc. 21(1), 26–28 (2000).

Lee, M.

M. Kyoung and M. Lee, “Z-scan Studies on the Third-order Optical Nonlinearity of Au Nanoparticles Embedded in TiO2,” Bull. Korean Chem. Soc. 21(1), 26–28 (2000).

Lee, M.-S.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell,” Jpn. J. Appl. Phys. 46(No. 4B), 2567–2570 (2007).
[CrossRef]

Li, B.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334–339 (2005).

Li, L.

L. Li and S. Xiong-Rui, “Enhanced optical nonlinear absorption of graded Au–TiO2 composite films,” Chinese Phys. B 17(6), 2170–2174 (2008).
[CrossRef]

Li, M.

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[CrossRef]

Li, Y.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Li, Z.

P. Xiao-Niu, L. Min, Y. Liao, Z. Xian, and Z. Li, “Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films,” Chin. Phys. Lett. 25(11), 4171–4173 (2008).
[CrossRef]

Liao, H.

H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22(9), 1923–1926 (2005).
[CrossRef]

Liao, H. B.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817 (1998).
[CrossRef]

Liao, Y.

P. Xiao-Niu, L. Min, Y. Liao, Z. Xian, and Z. Li, “Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films,” Chin. Phys. Lett. 25(11), 4171–4173 (2008).
[CrossRef]

Lim, Y.-M.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell,” Jpn. J. Appl. Phys. 46(No. 4B), 2567–2570 (2007).
[CrossRef]

Liu, Y.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334–339 (2005).

Long, H.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

López-Suárez, A.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

Lu, P.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Lu, W.

H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22(9), 1923–1926 (2005).
[CrossRef]

Ma, G.

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Appl. Phys. Lett. 306(5-6), 348–352 (2003).
[CrossRef]

Mao, Y.

L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Ultra fast third-order non-linear response of amino-triazole donor-acceptor derivatives by optical Kerr effect,” Opt. Commun. 281(20), 5239–5243 (2008).
[CrossRef]

May, R. A.

M. N. Patel, R. D. Williams, R. A. May, H. Uchida, K. J. Stevenson, and K. P. Johnston, “Electrophoretic Deposition of Au Nanocrystals inside Perpendicular Mesochannels of TiO2,” Chem. Mater. 20(19), 6029–6040 (2008).
[CrossRef]

Mecerreyes, D.

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

Min, L.

P. Xiao-Niu, L. Min, Y. Liao, Z. Xian, and Z. Li, “Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films,” Chin. Phys. Lett. 25(11), 4171–4173 (2008).
[CrossRef]

Moon, B. K.

H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon, and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films,” Appl. Phys. Lett. 68(21), 2965–2967 (1996).
[CrossRef]

Nampoori, V. P. N.

L. Irimpan, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2,” J. Colloid Interface Sci. 324(1-2), 0648 (2008).
[CrossRef]

Nanu, M.

R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, and M. Grätzel, “The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells,” Nano Lett. 2(5), 507–511 (2002).
[CrossRef]

O'Hayre, R.

R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, and M. Grätzel, “The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells,” Nano Lett. 2(5), 507–511 (2002).
[CrossRef]

Oliver, A.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Ortíz, A.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

Patel, M. N.

M. N. Patel, R. D. Williams, R. A. May, H. Uchida, K. J. Stevenson, and K. P. Johnston, “Electrophoretic Deposition of Au Nanocrystals inside Perpendicular Mesochannels of TiO2,” Chem. Mater. 20(19), 6029–6040 (2008).
[CrossRef]

Pei-Xiang, L.

L. Hua, Y. Guang, C. Ai-Ping, L. Yu-Hua, and L. Pei-Xiang, “Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties,” Chin. Phys. Lett. 25(11), 4135–4138 (2008).
[CrossRef]

Peréa-López, N.

M. Trejo-Valdez, R. Torres-Martínez, N. Peréa-López, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the two-photon absorption to the third order nonlinearity of Au nanoparticles embedded in TiO2 films and in ethanol suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[CrossRef]

Philip, R.

M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
[CrossRef]

Pradeep, T.

M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
[CrossRef]

Qian, S.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334–339 (2005).

Radhakrishnan, P.

L. Irimpan, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2,” J. Colloid Interface Sci. 324(1-2), 0648 (2008).
[CrossRef]

Rangel-Rojo, R.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Ultra fast third-order non-linear response of amino-triazole donor-acceptor derivatives by optical Kerr effect,” Opt. Commun. 281(20), 5239–5243 (2008).
[CrossRef]

Reyes-Esqueda, J. A.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

C. Torres-Torres, M. Trejo-Valdez, P. Santiago-Jacinto, and J. A. Reyes-Esqueda, ““Stimulated emission and optical third order nonlinearity in Li-doped nanorods,” J. hys,” Chem. Can. 113, 13515–13521 (2009).

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).
[CrossRef]

Rodríguez-Fernández, L.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Rohatgi, A.

Z. Chen, P. Sana, J. Salami, and A. Rohatgi, “A Novel and Effective PECVD SiO2/SiN Antireflection Coating for Si Solar Cells,” IEEE Trans. Electron. Dev. 40(6), 1161–1165 (1993).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Saito, N.

T. Houzouji, N. Saito, A. Kudo, and S. Takata, “Electroluminescence of TiO2 film and TiO2:Cu2+ film prepared by the sol-gel method,” Chem. Phys. Lett. 254(1-2), 109–113 (1996).
[CrossRef]

Salami, J.

Z. Chen, P. Sana, J. Salami, and A. Rohatgi, “A Novel and Effective PECVD SiO2/SiN Antireflection Coating for Si Solar Cells,” IEEE Trans. Electron. Dev. 40(6), 1161–1165 (1993).
[CrossRef]

Sana, P.

Z. Chen, P. Sana, J. Salami, and A. Rohatgi, “A Novel and Effective PECVD SiO2/SiN Antireflection Coating for Si Solar Cells,” IEEE Trans. Electron. Dev. 40(6), 1161–1165 (1993).
[CrossRef]

Santana, G.

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

Santiago-Jacinto, P.

M. Trejo-Valdez, R. Torres-Martínez, N. Peréa-López, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the two-photon absorption to the third order nonlinearity of Au nanoparticles embedded in TiO2 films and in ethanol suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[CrossRef]

C. Torres-Torres, M. Trejo-Valdez, P. Santiago-Jacinto, and J. A. Reyes-Esqueda, ““Stimulated emission and optical third order nonlinearity in Li-doped nanorods,” J. hys,” Chem. Can. 113, 13515–13521 (2009).

Schoonman, J.

R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, and M. Grätzel, “The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells,” Nano Lett. 2(5), 507–511 (2002).
[CrossRef]

Sciancalepore, C.

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Shi, J.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334–339 (2005).

Singh, N.

M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
[CrossRef]

Song, H.

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[CrossRef]

Sreekumaran Nair, A.

M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
[CrossRef]

Stevenson, K. J.

M. N. Patel, R. D. Williams, R. A. May, H. Uchida, K. J. Stevenson, and K. P. Johnston, “Electrophoretic Deposition of Au Nanocrystals inside Perpendicular Mesochannels of TiO2,” Chem. Mater. 20(19), 6029–6040 (2008).
[CrossRef]

Striccoli, M.

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

Su, X. R.

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[CrossRef]

Takata, S.

T. Houzouji, N. Saito, A. Kudo, and S. Takata, “Electroluminescence of TiO2 film and TiO2:Cu2+ film prepared by the sol-gel method,” Chem. Phys. Lett. 254(1-2), 109–113 (1996).
[CrossRef]

Tamayo-Rivera, L.

L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Ultra fast third-order non-linear response of amino-triazole donor-acceptor derivatives by optical Kerr effect,” Opt. Commun. 281(20), 5239–5243 (2008).
[CrossRef]

Tang, S.-H.

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Appl. Phys. Lett. 306(5-6), 348–352 (2003).
[CrossRef]

Thomas, J.

M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
[CrossRef]

Tom, R. T.

M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
[CrossRef]

Tommasi, R.

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

Torres-Martínez, R.

M. Trejo-Valdez, R. Torres-Martínez, N. Peréa-López, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the two-photon absorption to the third order nonlinearity of Au nanoparticles embedded in TiO2 films and in ethanol suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[CrossRef]

Torres-Torres, C.

M. Trejo-Valdez, R. Torres-Martínez, N. Peréa-López, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the two-photon absorption to the third order nonlinearity of Au nanoparticles embedded in TiO2 films and in ethanol suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[CrossRef]

C. Torres-Torres, M. Trejo-Valdez, P. Santiago-Jacinto, and J. A. Reyes-Esqueda, ““Stimulated emission and optical third order nonlinearity in Li-doped nanorods,” J. hys,” Chem. Can. 113, 13515–13521 (2009).

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

Trejo-Valdez, M.

M. Trejo-Valdez, R. Torres-Martínez, N. Peréa-López, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the two-photon absorption to the third order nonlinearity of Au nanoparticles embedded in TiO2 films and in ethanol suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[CrossRef]

C. Torres-Torres, M. Trejo-Valdez, P. Santiago-Jacinto, and J. A. Reyes-Esqueda, ““Stimulated emission and optical third order nonlinearity in Li-doped nanorods,” J. hys,” Chem. Can. 113, 13515–13521 (2009).

Tripathy, S. K.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell,” Jpn. J. Appl. Phys. 46(No. 4B), 2567–2570 (2007).
[CrossRef]

Uchida, H.

M. N. Patel, R. D. Williams, R. A. May, H. Uchida, K. J. Stevenson, and K. P. Johnston, “Electrophoretic Deposition of Au Nanocrystals inside Perpendicular Mesochannels of TiO2,” Chem. Mater. 20(19), 6029–6040 (2008).
[CrossRef]

Valentini, A.

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Vernardou, D.

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518(4), 1174–1176 (2009).
[CrossRef]

Wang, H.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817 (1998).
[CrossRef]

Wang, Q.

R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, and M. Grätzel, “The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells,” Nano Lett. 2(5), 507–511 (2002).
[CrossRef]

Watson, W. H.

L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Ultra fast third-order non-linear response of amino-triazole donor-acceptor derivatives by optical Kerr effect,” Opt. Commun. 281(20), 5239–5243 (2008).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Wen, W.

H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22(9), 1923–1926 (2005).
[CrossRef]

Williams, R. D.

M. N. Patel, R. D. Williams, R. A. May, H. Uchida, K. J. Stevenson, and K. P. Johnston, “Electrophoretic Deposition of Au Nanocrystals inside Perpendicular Mesochannels of TiO2,” Chem. Mater. 20(19), 6029–6040 (2008).
[CrossRef]

Wong, G. K. L.

H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22(9), 1923–1926 (2005).
[CrossRef]

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817 (1998).
[CrossRef]

Wong, K. S.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817 (1998).
[CrossRef]

Xian, Z.

P. Xiao-Niu, L. Min, Y. Liao, Z. Xian, and Z. Li, “Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films,” Chin. Phys. Lett. 25(11), 4171–4173 (2008).
[CrossRef]

Xiao, R. F.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817 (1998).
[CrossRef]

Xiao-Niu, P.

P. Xiao-Niu, L. Min, Y. Liao, Z. Xian, and Z. Li, “Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films,” Chin. Phys. Lett. 25(11), 4171–4173 (2008).
[CrossRef]

Xiong-Rui, S.

L. Li and S. Xiong-Rui, “Enhanced optical nonlinear absorption of graded Au–TiO2 composite films,” Chinese Phys. B 17(6), 2170–2174 (2008).
[CrossRef]

Yang, G.

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

Yoshimoto, M.

H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon, and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films,” Appl. Phys. Lett. 68(21), 2965–2967 (1996).
[CrossRef]

You, G.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334–339 (2005).

Yu, S.

H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22(9), 1923–1926 (2005).
[CrossRef]

Yu, Y.-T.

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell,” Jpn. J. Appl. Phys. 46(No. 4B), 2567–2570 (2007).
[CrossRef]

Yu-Hua, L.

L. Hua, Y. Guang, C. Ai-Ping, L. Yu-Hua, and L. Pei-Xiang, “Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties,” Chin. Phys. Lett. 25(11), 4135–4138 (2008).
[CrossRef]

Zhai, Y. Y.

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[CrossRef]

Zhang, C.

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334–339 (2005).

Zhou, Z. K.

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

H. K. Ha, M. Yoshimoto, H. Koinuma, B. K. Moon, and H. Ishiwara, “Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films,” Appl. Phys. Lett. 68(21), 2965–2967 (1996).
[CrossRef]

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817 (1998).
[CrossRef]

G. Ma, J. He, and S.-H. Tang, “Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO2 composite films,” Appl. Phys. Lett. 306(5-6), 348–352 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988).
[CrossRef]

Bull. Korean Chem. Soc. (1)

M. Kyoung and M. Lee, “Z-scan Studies on the Third-order Optical Nonlinearity of Au Nanoparticles Embedded in TiO2,” Bull. Korean Chem. Soc. 21(1), 26–28 (2000).

Chem. Can. (1)

C. Torres-Torres, M. Trejo-Valdez, P. Santiago-Jacinto, and J. A. Reyes-Esqueda, ““Stimulated emission and optical third order nonlinearity in Li-doped nanorods,” J. hys,” Chem. Can. 113, 13515–13521 (2009).

Chem. Mater. (1)

M. N. Patel, R. D. Williams, R. A. May, H. Uchida, K. J. Stevenson, and K. P. Johnston, “Electrophoretic Deposition of Au Nanocrystals inside Perpendicular Mesochannels of TiO2,” Chem. Mater. 20(19), 6029–6040 (2008).
[CrossRef]

Chem. Phys. Lett. (2)

T. Houzouji, N. Saito, A. Kudo, and S. Takata, “Electroluminescence of TiO2 film and TiO2:Cu2+ film prepared by the sol-gel method,” Chem. Phys. Lett. 254(1-2), 109–113 (1996).
[CrossRef]

M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380(1-2), 223–229 (2003).
[CrossRef]

Chin. Phys. Lett. (2)

L. Hua, Y. Guang, C. Ai-Ping, L. Yu-Hua, and L. Pei-Xiang, “Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties,” Chin. Phys. Lett. 25(11), 4135–4138 (2008).
[CrossRef]

P. Xiao-Niu, L. Min, Y. Liao, Z. Xian, and Z. Li, “Annealing Induced Aggregations and Sign Alterations of Nonlinear Absorption and Refraction of Dense Au Nanoparticles in TiO2 Films,” Chin. Phys. Lett. 25(11), 4171–4173 (2008).
[CrossRef]

Chinese Phys. B (1)

L. Li and S. Xiong-Rui, “Enhanced optical nonlinear absorption of graded Au–TiO2 composite films,” Chinese Phys. B 17(6), 2170–2174 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

Z. Chen, P. Sana, J. Salami, and A. Rohatgi, “A Novel and Effective PECVD SiO2/SiN Antireflection Coating for Si Solar Cells,” IEEE Trans. Electron. Dev. 40(6), 1161–1165 (1993).
[CrossRef]

J. Appl. Phys. (1)

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[CrossRef]

J. Colloid Interface Sci. (1)

L. Irimpan, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2,” J. Colloid Interface Sci. 324(1-2), 0648 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22(9), 1923–1926 (2005).
[CrossRef]

J. Phys. Chem. C (1)

M. Trejo-Valdez, R. Torres-Martínez, N. Peréa-López, P. Santiago-Jacinto, and C. Torres-Torres, “Contribution of the two-photon absorption to the third order nonlinearity of Au nanoparticles embedded in TiO2 films and in ethanol suspension,” J. Phys. Chem. C 114(22), 10108–10113 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H.-W. Kwon, Y.-M. Lim, S. K. Tripathy, B.-G. Kim, M.-S. Lee, and Y.-T. Yu, “Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell,” Jpn. J. Appl. Phys. 46(No. 4B), 2567–2570 (2007).
[CrossRef]

Nano Lett. (1)

R. O'Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, and M. Grätzel, “The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells,” Nano Lett. 2(5), 507–511 (2002).
[CrossRef]

Nanotechnology (1)

C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19(20), 205705 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, and W. H. Watson, “Ultra fast third-order non-linear response of amino-triazole donor-acceptor derivatives by optical Kerr effect,” Opt. Commun. 281(20), 5239–5243 (2008).
[CrossRef]

Opt. Express (1)

A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortíz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

Z. K. Zhou, M. Li, X. R. Su, Y. Y. Zhai, H. Song, J. B. Han, and Z. H. Hao, “Enhancement of nonlinear optical properties of Au-TiO2 granular composite with high percolation threshold,” Phys. Status Solidi A 205(2), 345–349 (2008).
[CrossRef]

Physica B (1)

C. Zhang, Y. Liu, G. You, B. Li, J. Shi, and S. Qian, “Ultrafast nonlinear optical response of Au:TiO2 composite nanoparticle films,” Physica B 357, 334–339 (2005).

Thin Solid Films (3)

H. Kuster and J. Ebert, “Activated reactive evaporation of TiO2 layers and their absorption indices,” Thin Solid Films 70(1), 43–47 (1980).
[CrossRef]

H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films 517(19), 5601–5604 (2009).
[CrossRef]

K. Iliopoulos, G. Kalogerakis, D. Vernardou, N. Katsarakis, E. Koudoumas, and S. Couris, “Nonlinear optical response of titanium oxide nanostructured thin films,” Thin Solid Films 518(4), 1174–1176 (2009).
[CrossRef]

Other (2)

R. C. Weast, ed., Hand Book of Chemistry and Physics, 67th Edition, (CRC Press, Boca Raton, FL, 1986–1987), p. B-140.

R. W. Boyd, Nonlinear Optics, (Academic Press, San Diego, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the ultrasonic spray pyrolysis system (USP) used to deposit TiO2-anatase phase thin films.

Fig. 2
Fig. 2

Setup for the picosecond multiwave experiment.

Fig. 3
Fig. 3

Setup for the femtosecond Kerr gate experiment.

Fig. 4
Fig. 4

Linear optical absorption spectra,

Fig. 5
Fig. 5

Typical AFM micrograph for Au NPs embedded in the TiO2 film.

Fig. 6
Fig. 6

Statistical cumulative distribution of partical size.

Fig. 7
Fig. 7

Self-diffraction efficiency exhibited by the samples.

Fig. 8
Fig. 8

Optical transmittance as function of incident irradiance (a)TiO2 prepared by spray pyrolysis, (b) bilayer sample.

Fig. 9
Fig. 9

Picosecond closed aperture Z-scan experiments (a) Spray pyrolysis TiO2 film, (b) Sol-gel TiO2 film with embedded Au NPs. (c) Bilayer sample.

Fig. 10
Fig. 10

Kerr transmittance versus probe delay in the femtosecond gate experiment, (a) Spray pyrolysis TiO2, (b) Sol-gel TiO2 film with embedded Au NPs, (c) TiO2 prepared by spray pyrolysis in addition with Au NPs embedded in a TiO2 film.

Tables (1)

Tables Icon

Table 1 - Optical nonlinearities exhibited by the samples.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E 1 ± ( z ) = [ E 1 ± 0 J 0 ( Ψ ± ( 1 ) ) + ( i E 2 ± 0 i E 3 ± 0 ) J 1 ( Ψ ± ( 1 ) ) E 4 ± 0 J 2 ( Ψ ± ( 1 ) ) ] exp ( i Ψ ± ( 0 ) α ( I ) z 2 )
E 2 ± ( z ) = [ E 2 ± 0 J 0 ( Ψ ± ( 1 ) ) + ( i E 4 ± 0 i E 1 ± 0 ) J 1 ( Ψ ± ( 1 ) ) E 3 ± 0 J 2 ( Ψ ± ( 1 ) ) ] exp ( i Ψ ± ( 0 ) α ( I ) z 2 )
E 3 ± ( z ) = [ E 3 ± 0 J 0 ( Ψ ± ( 1 ) ) + i E 1 ± 0 J 1 ( Ψ ± ( 1 ) ) E 2 ± 0 J 2 ( Ψ ± ( 1 ) ) i E 4 ± 0 J 3 ( Ψ ± ( 1 ) ) ] exp ( i Ψ ± ( 0 ) α ( I ) z 2 ) ,
E 4 ± ( z ) = [ E 4 ± 0 J 0 ( Ψ ± ( 1 ) ) i E 2 ± 0 J 1 ( Ψ ± ( 1 ) ) E 1 ± 0 J 2 ( Ψ ± ( 1 ) ) + i E 3 ± 0 J 3 ( Ψ ± ( 1 ) ) ] exp ( i Ψ ± ( 0 ) α ( I ) z 2 ) ,
Ψ ± ( 0 ) = 4 π 2 z n 0 λ [ ( A + n 0 β 2 π ) j = 1 4 | E j ± | 2 + ( A + B + n 0 β 2 π ) j = 1 4 | E j | 2 ] ,
Ψ ± ( 1 ) = 4 π 2 z n 0 λ [ ( A + n 0 β 2 π ) j = 1 3 k = 2 4 E j ± E k ± * + ( A + B + n 0 β 2 π ) j = 1 3 k = 2 4 E j E k * ]
χ 1111 ( 3 ) = χ 1122 ( 3 ) + χ 1212 ( 3 ) + χ 1221 ( 3 ) = 2 χ 1122 ( 3 ) + χ 1221 ( 3 )
χ ( 3 ) = 2 n 0 2 ε 0 c n 2 + i n 0 2 ε 0 c 2 ω β ,

Metrics