Abstract

A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 μm behind the mask. The results show a improvement of the achieved resolution – linewidth as good as 1.5 μm - what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
    [CrossRef]
  2. M. D. Levenson, “Using destructive optical interference in semiconductor lithography,” Opt. Photon. News, 30-35 Apr. (2006).
  3. M. D. Levenson, “Wavefront engineering for photolithography,” Phys. Today 28–36, (1993).
    [CrossRef]
  4. M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33(Part 1, No. 12B), 6765–6773 (1994).
    [CrossRef]
  5. M. Shibuya, “Projection master for transmitted illumination,” Japanese Patent Gazette # Showa 62–50811, October 27, (1987).
  6. G. Talor, “Transparent phase shift mask for fabrication of small feature sizes,” US Patent 6 933 085 B1, August 23, (2005).
  7. K. Kukuchi, “Phase shift mask, method of exposure, and method of producing semiconductor devices”, US Patent Application US 2002/0177051 A1, August 03, (2002).
  8. J. Turunen and F. Wyrowski, in Diffractive Optics for Industrial and Commercial Applications, 1st.ed, (Berlin: Akademi. Verlag, 1997), Chap. 1.
  9. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test, (SPIE Press: Washington, 2004), pp. 115–121.
  10. T. J. Suleski, W. F. Delaney, and M. R. Feldman, “Fabricating optical elements using a photoresist formed from proximity printing of a gray level mask”, US Patent 6 638 667, October 28, 2003.
  11. P. Dentinger, K. Krafcik, K. Simison, R. Janek, and J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source,” Microelectron. Eng. 61–62, 1001–1007 (2002).
    [CrossRef]
  12. P. Canestrari, G. A. Degiorgis, P. de Natale, L. Gazzaruso, and G. Rivera, “Optimization of partial coherence for half-micron i–line lithography” Proc. SPIE 1463, 446–455 (1991).
    [CrossRef]
  13. D. Meyerhofer and J. Mitchell, “Proximity printing of chrome masks,” Polym. Eng. Sci. 23(18), 990–992 (1983).
    [CrossRef]
  14. T. Lin, H. Yang and C. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing”, Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP’07), 11–15, (2007).
  15. L. Ping, Y. Hsihamg, and C. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromechan. Eng. 13(5), 748–757 (2003).
    [CrossRef]
  16. H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsyst. Technol. 12(2), 82–90 (2005).
    [CrossRef]
  17. T. Lin, H. Yang, R. F. Shyu, and C.-K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14(7), 1035–1040 (2008).
    [CrossRef]
  18. W. Henke, M. Weiss, R. Schwalm, and J. Pelka, “Simulation of proximity printing,” Microelectron. Eng. 10(2), 127–152 (1990).
    [CrossRef]
  19. B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolithography, MEMS MOEMS 6(2), 729–736 (2007).
  20. B. Meliorisz, P. Evanschitzky, and A. Erdmann, “Simulation of proximity and contact lithography,” Microelectron. Eng. 84(5), 733–736 (2007).
    [CrossRef]
  21. M. Teschke and S. Sinzinger, “Novel approaches to the design of halftone masks for analog lithography,” Appl. Opt. 47(26), 4767–4776 (2008).
    [CrossRef] [PubMed]
  22. S. A. Campbell, The Science and Engineering of Microeledtronic Fabrication, (Oxford University Press, 1996), Chap. 7.
  23. H. Kirchauer, “Photolithography Simulation“, PhD. Dissertation, Fakultät für Elektrotechnik, Technischen, Universität Wien . (1998). http://www.iue.tuwien.ac.at/phd/kirchauer/
  24. F. Wyrowski, E. Kley, T. J. Nellissen, L. Wang, and S. Bühling, “Proximity printing by wave-optically designed masks,” Proc SPIE 4436, (2001).
  25. S. Buhling, et al., “High resolution proximity printing by wave-optically designed complex transmission masks,” Proc SPIE 4404, (2001).
  26. L. G. Neto, R. D. Mansano, G. A. Cirino, L. S. Zambom, and P. Verdonck, “Amorphous hidrogenated carbon film,” US Patent 7,381,452, June (2008).
  27. L. G. Neto, G. A. Cirino, R. D. Mansano, P. S. P. Cardona, and P. Verdonck, “Hybrid phase and amplitude modulation proximity printing mask fabricated on DLC and SiO2 substrates,” Proc SPIE 4984, 18-28 (2003).
  28. L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Microlithography, Microfabrication and Microsystems 2(2), 96–104 (2003).
    [CrossRef]
  29. L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Implementation of Fresnel full complex-amplitude digital holograms,” Opt. Eng. 43(11), 2640 (2004).
    [CrossRef]
  30. G. A. Cirino, P. Verdonck, R. D. Mansano, and L. G. Neto, “Optical characterization of an amorphous-hidrogenated carbon film and its application in phase modulated diffractive optical elements” in Proc. XVI International Conference on Microelectronics and Packaging, Brazil, 140–145, (2001).
  31. L. G. Neto, G. A. Cirino, R. D. Mansano, P. S. P. Cardona, and P. Verdonck, “Hybrid phase and amplitude modulation proximity printing mask fabricated on DLC and SiO2 substrates”, Proc SPIE 4984, 18-28 (2003).
  32. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., (McGraw-Hill, 1996), Chap. 3.
  33. G. A. Cirino, R. D. Mansano, P. Verdonck, R. G. Jasinevicius, and L. G. Neto, “Diffraction gratings fabricated on DLC thin films,” Surf. Coat. Tech. 204(18-19), 2966–2970 (2010).
    [CrossRef]
  34. C. R. A. Lima, L. L. Soares, L. Cescato, M. A. Alves, and E. S. Braga, “Diffractive structures holographically recorded in amorphous hydrogenated carbon (a-C:H) films,” Opt. Lett. 22(23), 1805–1807 (1997).
    [CrossRef]
  35. L. L. Soares and ., “Recording of relief structures in amorphous hydrogenated carbon (a-C:H) films for infrared diffractive optics,” J. Mod. Opt. 45(7), 1479–1486 (1998).
    [CrossRef]
  36. L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001).
    [CrossRef]
  37. R. D. Mansano, P. Verdonck, and H. S. Maciel, “Anisotropic reactive ion etching in silicon, using a graphite electrode,” Sens. Actuators A Phys. 65(2-3), 180–186 (1998).
    [CrossRef]
  38. P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55(3-4), 191–196 (1999).
    [CrossRef]
  39. R. D. Mansano, “Effects of the methane content on the characteristics of diamond-like carbon films produced by sputtering,” Thin Solid Films 373(1-2), 243–246 (2000).
    [CrossRef]
  40. S. A. Campbell, The Science and Engineering of Microeledtronic Fabrication, (Oxford University Press, 1996), Chap. 7.
  41. P. Concidine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am. 56(8), 1001–1008 (1966).
    [CrossRef]
  42. M. Born, and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, 6th ed., (Pergamon, 1980), Chap. 10.
  43. P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direct oder mittels einer Linse beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934).
    [CrossRef]
  44. F. Zernike, “The Concept of Degree of Coherence and Its Application to Optical Problems,” Physics 5, 785–795 (1938).

2010

G. A. Cirino, R. D. Mansano, P. Verdonck, R. G. Jasinevicius, and L. G. Neto, “Diffraction gratings fabricated on DLC thin films,” Surf. Coat. Tech. 204(18-19), 2966–2970 (2010).
[CrossRef]

2008

M. Teschke and S. Sinzinger, “Novel approaches to the design of halftone masks for analog lithography,” Appl. Opt. 47(26), 4767–4776 (2008).
[CrossRef] [PubMed]

T. Lin, H. Yang, R. F. Shyu, and C.-K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14(7), 1035–1040 (2008).
[CrossRef]

2007

B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolithography, MEMS MOEMS 6(2), 729–736 (2007).

B. Meliorisz, P. Evanschitzky, and A. Erdmann, “Simulation of proximity and contact lithography,” Microelectron. Eng. 84(5), 733–736 (2007).
[CrossRef]

2005

H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsyst. Technol. 12(2), 82–90 (2005).
[CrossRef]

2004

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Implementation of Fresnel full complex-amplitude digital holograms,” Opt. Eng. 43(11), 2640 (2004).
[CrossRef]

2003

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Microlithography, Microfabrication and Microsystems 2(2), 96–104 (2003).
[CrossRef]

L. Ping, Y. Hsihamg, and C. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromechan. Eng. 13(5), 748–757 (2003).
[CrossRef]

2002

P. Dentinger, K. Krafcik, K. Simison, R. Janek, and J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source,” Microelectron. Eng. 61–62, 1001–1007 (2002).
[CrossRef]

2001

L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001).
[CrossRef]

2000

R. D. Mansano, “Effects of the methane content on the characteristics of diamond-like carbon films produced by sputtering,” Thin Solid Films 373(1-2), 243–246 (2000).
[CrossRef]

1999

P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55(3-4), 191–196 (1999).
[CrossRef]

1998

L. L. Soares and ., “Recording of relief structures in amorphous hydrogenated carbon (a-C:H) films for infrared diffractive optics,” J. Mod. Opt. 45(7), 1479–1486 (1998).
[CrossRef]

R. D. Mansano, P. Verdonck, and H. S. Maciel, “Anisotropic reactive ion etching in silicon, using a graphite electrode,” Sens. Actuators A Phys. 65(2-3), 180–186 (1998).
[CrossRef]

1997

C. R. A. Lima, L. L. Soares, L. Cescato, M. A. Alves, and E. S. Braga, “Diffractive structures holographically recorded in amorphous hydrogenated carbon (a-C:H) films,” Opt. Lett. 22(23), 1805–1807 (1997).
[CrossRef]

1994

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33(Part 1, No. 12B), 6765–6773 (1994).
[CrossRef]

1993

M. D. Levenson, “Wavefront engineering for photolithography,” Phys. Today 28–36, (1993).
[CrossRef]

1991

P. Canestrari, G. A. Degiorgis, P. de Natale, L. Gazzaruso, and G. Rivera, “Optimization of partial coherence for half-micron i–line lithography” Proc. SPIE 1463, 446–455 (1991).
[CrossRef]

1990

W. Henke, M. Weiss, R. Schwalm, and J. Pelka, “Simulation of proximity printing,” Microelectron. Eng. 10(2), 127–152 (1990).
[CrossRef]

1983

D. Meyerhofer and J. Mitchell, “Proximity printing of chrome masks,” Polym. Eng. Sci. 23(18), 990–992 (1983).
[CrossRef]

1982

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

1966

P. Concidine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am. 56(8), 1001–1008 (1966).
[CrossRef]

1938

F. Zernike, “The Concept of Degree of Coherence and Its Application to Optical Problems,” Physics 5, 785–795 (1938).

1934

P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direct oder mittels einer Linse beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934).
[CrossRef]

Alves, M. A.

C. R. A. Lima, L. L. Soares, L. Cescato, M. A. Alves, and E. S. Braga, “Diffractive structures holographically recorded in amorphous hydrogenated carbon (a-C:H) films,” Opt. Lett. 22(23), 1805–1807 (1997).
[CrossRef]

Braga, E. S.

C. R. A. Lima, L. L. Soares, L. Cescato, M. A. Alves, and E. S. Braga, “Diffractive structures holographically recorded in amorphous hydrogenated carbon (a-C:H) films,” Opt. Lett. 22(23), 1805–1807 (1997).
[CrossRef]

Canestrari, P.

P. Canestrari, G. A. Degiorgis, P. de Natale, L. Gazzaruso, and G. Rivera, “Optimization of partial coherence for half-micron i–line lithography” Proc. SPIE 1463, 446–455 (1991).
[CrossRef]

Cardona, P. S. P.

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Implementation of Fresnel full complex-amplitude digital holograms,” Opt. Eng. 43(11), 2640 (2004).
[CrossRef]

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Microlithography, Microfabrication and Microsystems 2(2), 96–104 (2003).
[CrossRef]

Cescato, L.

C. R. A. Lima, L. L. Soares, L. Cescato, M. A. Alves, and E. S. Braga, “Diffractive structures holographically recorded in amorphous hydrogenated carbon (a-C:H) films,” Opt. Lett. 22(23), 1805–1807 (1997).
[CrossRef]

Chao, C.

L. Ping, Y. Hsihamg, and C. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromechan. Eng. 13(5), 748–757 (2003).
[CrossRef]

Chao, C. K.

H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsyst. Technol. 12(2), 82–90 (2005).
[CrossRef]

Chao, C.-K.

T. Lin, H. Yang, R. F. Shyu, and C.-K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14(7), 1035–1040 (2008).
[CrossRef]

Cirino, G. A.

G. A. Cirino, R. D. Mansano, P. Verdonck, R. G. Jasinevicius, and L. G. Neto, “Diffraction gratings fabricated on DLC thin films,” Surf. Coat. Tech. 204(18-19), 2966–2970 (2010).
[CrossRef]

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Implementation of Fresnel full complex-amplitude digital holograms,” Opt. Eng. 43(11), 2640 (2004).
[CrossRef]

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Microlithography, Microfabrication and Microsystems 2(2), 96–104 (2003).
[CrossRef]

L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001).
[CrossRef]

Concidine, P.

P. Concidine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am. 56(8), 1001–1008 (1966).
[CrossRef]

de Natale, P.

P. Canestrari, G. A. Degiorgis, P. de Natale, L. Gazzaruso, and G. Rivera, “Optimization of partial coherence for half-micron i–line lithography” Proc. SPIE 1463, 446–455 (1991).
[CrossRef]

Degiorgis, G. A.

P. Canestrari, G. A. Degiorgis, P. de Natale, L. Gazzaruso, and G. Rivera, “Optimization of partial coherence for half-micron i–line lithography” Proc. SPIE 1463, 446–455 (1991).
[CrossRef]

Dentinger, P.

P. Dentinger, K. Krafcik, K. Simison, R. Janek, and J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source,” Microelectron. Eng. 61–62, 1001–1007 (2002).
[CrossRef]

Erdmann, A.

B. Meliorisz, P. Evanschitzky, and A. Erdmann, “Simulation of proximity and contact lithography,” Microelectron. Eng. 84(5), 733–736 (2007).
[CrossRef]

B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolithography, MEMS MOEMS 6(2), 729–736 (2007).

Evanschitzky, P.

B. Meliorisz, P. Evanschitzky, and A. Erdmann, “Simulation of proximity and contact lithography,” Microelectron. Eng. 84(5), 733–736 (2007).
[CrossRef]

Gazzaruso, L.

P. Canestrari, G. A. Degiorgis, P. de Natale, L. Gazzaruso, and G. Rivera, “Optimization of partial coherence for half-micron i–line lithography” Proc. SPIE 1463, 446–455 (1991).
[CrossRef]

Hachman, J.

P. Dentinger, K. Krafcik, K. Simison, R. Janek, and J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source,” Microelectron. Eng. 61–62, 1001–1007 (2002).
[CrossRef]

Henke, W.

W. Henke, M. Weiss, R. Schwalm, and J. Pelka, “Simulation of proximity printing,” Microelectron. Eng. 10(2), 127–152 (1990).
[CrossRef]

Hsihamg, Y.

L. Ping, Y. Hsihamg, and C. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromechan. Eng. 13(5), 748–757 (2003).
[CrossRef]

Janek, R.

P. Dentinger, K. Krafcik, K. Simison, R. Janek, and J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source,” Microelectron. Eng. 61–62, 1001–1007 (2002).
[CrossRef]

Jasinevicius, R. G.

G. A. Cirino, R. D. Mansano, P. Verdonck, R. G. Jasinevicius, and L. G. Neto, “Diffraction gratings fabricated on DLC thin films,” Surf. Coat. Tech. 204(18-19), 2966–2970 (2010).
[CrossRef]

Krafcik, K.

P. Dentinger, K. Krafcik, K. Simison, R. Janek, and J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source,” Microelectron. Eng. 61–62, 1001–1007 (2002).
[CrossRef]

Leech, P. W.

P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55(3-4), 191–196 (1999).
[CrossRef]

Levenson, M. D.

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33(Part 1, No. 12B), 6765–6773 (1994).
[CrossRef]

M. D. Levenson, “Wavefront engineering for photolithography,” Phys. Today 28–36, (1993).
[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

Lima, C. R. A.

C. R. A. Lima, L. L. Soares, L. Cescato, M. A. Alves, and E. S. Braga, “Diffractive structures holographically recorded in amorphous hydrogenated carbon (a-C:H) films,” Opt. Lett. 22(23), 1805–1807 (1997).
[CrossRef]

Lin, C. P.

H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsyst. Technol. 12(2), 82–90 (2005).
[CrossRef]

Lin, T.

T. Lin, H. Yang, R. F. Shyu, and C.-K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14(7), 1035–1040 (2008).
[CrossRef]

Lin, T. H.

H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsyst. Technol. 12(2), 82–90 (2005).
[CrossRef]

Maciel, H. S.

R. D. Mansano, P. Verdonck, and H. S. Maciel, “Anisotropic reactive ion etching in silicon, using a graphite electrode,” Sens. Actuators A Phys. 65(2-3), 180–186 (1998).
[CrossRef]

Mansano, R. D.

G. A. Cirino, R. D. Mansano, P. Verdonck, R. G. Jasinevicius, and L. G. Neto, “Diffraction gratings fabricated on DLC thin films,” Surf. Coat. Tech. 204(18-19), 2966–2970 (2010).
[CrossRef]

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Implementation of Fresnel full complex-amplitude digital holograms,” Opt. Eng. 43(11), 2640 (2004).
[CrossRef]

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Microlithography, Microfabrication and Microsystems 2(2), 96–104 (2003).
[CrossRef]

L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001).
[CrossRef]

R. D. Mansano, “Effects of the methane content on the characteristics of diamond-like carbon films produced by sputtering,” Thin Solid Films 373(1-2), 243–246 (2000).
[CrossRef]

R. D. Mansano, P. Verdonck, and H. S. Maciel, “Anisotropic reactive ion etching in silicon, using a graphite electrode,” Sens. Actuators A Phys. 65(2-3), 180–186 (1998).
[CrossRef]

Meliorisz, B.

B. Meliorisz, P. Evanschitzky, and A. Erdmann, “Simulation of proximity and contact lithography,” Microelectron. Eng. 84(5), 733–736 (2007).
[CrossRef]

B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolithography, MEMS MOEMS 6(2), 729–736 (2007).

Meyerhofer, D.

D. Meyerhofer and J. Mitchell, “Proximity printing of chrome masks,” Polym. Eng. Sci. 23(18), 990–992 (1983).
[CrossRef]

Mitchell, J.

D. Meyerhofer and J. Mitchell, “Proximity printing of chrome masks,” Polym. Eng. Sci. 23(18), 990–992 (1983).
[CrossRef]

Neto, L. G.

G. A. Cirino, R. D. Mansano, P. Verdonck, R. G. Jasinevicius, and L. G. Neto, “Diffraction gratings fabricated on DLC thin films,” Surf. Coat. Tech. 204(18-19), 2966–2970 (2010).
[CrossRef]

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Implementation of Fresnel full complex-amplitude digital holograms,” Opt. Eng. 43(11), 2640 (2004).
[CrossRef]

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Microlithography, Microfabrication and Microsystems 2(2), 96–104 (2003).
[CrossRef]

L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001).
[CrossRef]

Pelka, J.

W. Henke, M. Weiss, R. Schwalm, and J. Pelka, “Simulation of proximity printing,” Microelectron. Eng. 10(2), 127–152 (1990).
[CrossRef]

Ping, L.

L. Ping, Y. Hsihamg, and C. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromechan. Eng. 13(5), 748–757 (2003).
[CrossRef]

Rivera, G.

P. Canestrari, G. A. Degiorgis, P. de Natale, L. Gazzaruso, and G. Rivera, “Optimization of partial coherence for half-micron i–line lithography” Proc. SPIE 1463, 446–455 (1991).
[CrossRef]

Roberto, L. B.

L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001).
[CrossRef]

Schwalm, R.

W. Henke, M. Weiss, R. Schwalm, and J. Pelka, “Simulation of proximity printing,” Microelectron. Eng. 10(2), 127–152 (1990).
[CrossRef]

Shyu, R. F.

T. Lin, H. Yang, R. F. Shyu, and C.-K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14(7), 1035–1040 (2008).
[CrossRef]

Simison, K.

P. Dentinger, K. Krafcik, K. Simison, R. Janek, and J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source,” Microelectron. Eng. 61–62, 1001–1007 (2002).
[CrossRef]

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

Sinzinger, S.

M. Teschke and S. Sinzinger, “Novel approaches to the design of halftone masks for analog lithography,” Appl. Opt. 47(26), 4767–4776 (2008).
[CrossRef] [PubMed]

Soares, L. L.

L. L. Soares and ., “Recording of relief structures in amorphous hydrogenated carbon (a-C:H) films for infrared diffractive optics,” J. Mod. Opt. 45(7), 1479–1486 (1998).
[CrossRef]

C. R. A. Lima, L. L. Soares, L. Cescato, M. A. Alves, and E. S. Braga, “Diffractive structures holographically recorded in amorphous hydrogenated carbon (a-C:H) films,” Opt. Lett. 22(23), 1805–1807 (1997).
[CrossRef]

Steffani, M. A.

L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001).
[CrossRef]

Teschke, M.

M. Teschke and S. Sinzinger, “Novel approaches to the design of halftone masks for analog lithography,” Appl. Opt. 47(26), 4767–4776 (2008).
[CrossRef] [PubMed]

van Cittert, P. H.

P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direct oder mittels einer Linse beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934).
[CrossRef]

Verdonck, P.

G. A. Cirino, R. D. Mansano, P. Verdonck, R. G. Jasinevicius, and L. G. Neto, “Diffraction gratings fabricated on DLC thin films,” Surf. Coat. Tech. 204(18-19), 2966–2970 (2010).
[CrossRef]

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Implementation of Fresnel full complex-amplitude digital holograms,” Opt. Eng. 43(11), 2640 (2004).
[CrossRef]

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Microlithography, Microfabrication and Microsystems 2(2), 96–104 (2003).
[CrossRef]

L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001).
[CrossRef]

R. D. Mansano, P. Verdonck, and H. S. Maciel, “Anisotropic reactive ion etching in silicon, using a graphite electrode,” Sens. Actuators A Phys. 65(2-3), 180–186 (1998).
[CrossRef]

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

Weiss, M.

W. Henke, M. Weiss, R. Schwalm, and J. Pelka, “Simulation of proximity printing,” Microelectron. Eng. 10(2), 127–152 (1990).
[CrossRef]

Yang, H.

T. Lin, H. Yang, R. F. Shyu, and C.-K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14(7), 1035–1040 (2008).
[CrossRef]

H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsyst. Technol. 12(2), 82–90 (2005).
[CrossRef]

Zernike, F.

F. Zernike, “The Concept of Degree of Coherence and Its Application to Optical Problems,” Physics 5, 785–795 (1938).

Appl. Opt.

M. Teschke and S. Sinzinger, “Novel approaches to the design of halftone masks for analog lithography,” Appl. Opt. 47(26), 4767–4776 (2008).
[CrossRef] [PubMed]

L. G. Neto, L. B. Roberto, R. D. Mansano, P. Verdonck, G. A. Cirino, and M. A. Steffani, “Multiple Line Generation Over High Angle Using Hybrid Parabolic Profile and Binary Surface-Relief Phase Element,” Appl. Opt. 40(2), 211–218 (2001).
[CrossRef]

IEEE Trans. Electron. Dev.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982).
[CrossRef]

J. Micro/Nanolithography,

B. Meliorisz and A. Erdmann, “Simulation of mask proximity printing,” J. Micro/Nanolithography, MEMS MOEMS 6(2), 729–736 (2007).

J. Microlithography, Microfabrication and Microsystems

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Design, fabrication, and characterization of a full complex-amplitude modulation diffractive optical element,” J. Microlithography, Microfabrication and Microsystems 2(2), 96–104 (2003).
[CrossRef]

J. Micromechan. Eng.

L. Ping, Y. Hsihamg, and C. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromechan. Eng. 13(5), 748–757 (2003).
[CrossRef]

J. Mod. Opt.

L. L. Soares and ., “Recording of relief structures in amorphous hydrogenated carbon (a-C:H) films for infrared diffractive optics,” J. Mod. Opt. 45(7), 1479–1486 (1998).
[CrossRef]

J. Opt. Soc. Am.

P. Concidine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am. 56(8), 1001–1008 (1966).
[CrossRef]

Jpn. J. Appl. Phys.

M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33(Part 1, No. 12B), 6765–6773 (1994).
[CrossRef]

Microelectron. Eng.

P. Dentinger, K. Krafcik, K. Simison, R. Janek, and J. Hachman, “High aspect ratio patterning with a proximity ultraviolet source,” Microelectron. Eng. 61–62, 1001–1007 (2002).
[CrossRef]

B. Meliorisz, P. Evanschitzky, and A. Erdmann, “Simulation of proximity and contact lithography,” Microelectron. Eng. 84(5), 733–736 (2007).
[CrossRef]

W. Henke, M. Weiss, R. Schwalm, and J. Pelka, “Simulation of proximity printing,” Microelectron. Eng. 10(2), 127–152 (1990).
[CrossRef]

Microsyst. Technol.

H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsyst. Technol. 12(2), 82–90 (2005).
[CrossRef]

T. Lin, H. Yang, R. F. Shyu, and C.-K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14(7), 1035–1040 (2008).
[CrossRef]

Opt. Eng.

L. G. Neto, P. S. P. Cardona, G. A. Cirino, R. D. Mansano, and P. Verdonck, “Implementation of Fresnel full complex-amplitude digital holograms,” Opt. Eng. 43(11), 2640 (2004).
[CrossRef]

Opt. Lett.

C. R. A. Lima, L. L. Soares, L. Cescato, M. A. Alves, and E. S. Braga, “Diffractive structures holographically recorded in amorphous hydrogenated carbon (a-C:H) films,” Opt. Lett. 22(23), 1805–1807 (1997).
[CrossRef]

Phys. Today

M. D. Levenson, “Wavefront engineering for photolithography,” Phys. Today 28–36, (1993).
[CrossRef]

Physica

P. H. van Cittert, “Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direct oder mittels einer Linse beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934).
[CrossRef]

Physics

F. Zernike, “The Concept of Degree of Coherence and Its Application to Optical Problems,” Physics 5, 785–795 (1938).

Polym. Eng. Sci.

D. Meyerhofer and J. Mitchell, “Proximity printing of chrome masks,” Polym. Eng. Sci. 23(18), 990–992 (1983).
[CrossRef]

Proc. SPIE

P. Canestrari, G. A. Degiorgis, P. de Natale, L. Gazzaruso, and G. Rivera, “Optimization of partial coherence for half-micron i–line lithography” Proc. SPIE 1463, 446–455 (1991).
[CrossRef]

Sens. Actuators A Phys.

R. D. Mansano, P. Verdonck, and H. S. Maciel, “Anisotropic reactive ion etching in silicon, using a graphite electrode,” Sens. Actuators A Phys. 65(2-3), 180–186 (1998).
[CrossRef]

Surf. Coat. Tech.

G. A. Cirino, R. D. Mansano, P. Verdonck, R. G. Jasinevicius, and L. G. Neto, “Diffraction gratings fabricated on DLC thin films,” Surf. Coat. Tech. 204(18-19), 2966–2970 (2010).
[CrossRef]

Thin Solid Films

R. D. Mansano, “Effects of the methane content on the characteristics of diamond-like carbon films produced by sputtering,” Thin Solid Films 373(1-2), 243–246 (2000).
[CrossRef]

Vacuum

P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55(3-4), 191–196 (1999).
[CrossRef]

Other

S. A. Campbell, The Science and Engineering of Microeledtronic Fabrication, (Oxford University Press, 1996), Chap. 7.

M. Born, and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, 6th ed., (Pergamon, 1980), Chap. 10.

G. A. Cirino, P. Verdonck, R. D. Mansano, and L. G. Neto, “Optical characterization of an amorphous-hidrogenated carbon film and its application in phase modulated diffractive optical elements” in Proc. XVI International Conference on Microelectronics and Packaging, Brazil, 140–145, (2001).

L. G. Neto, G. A. Cirino, R. D. Mansano, P. S. P. Cardona, and P. Verdonck, “Hybrid phase and amplitude modulation proximity printing mask fabricated on DLC and SiO2 substrates”, Proc SPIE 4984, 18-28 (2003).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed., (McGraw-Hill, 1996), Chap. 3.

S. A. Campbell, The Science and Engineering of Microeledtronic Fabrication, (Oxford University Press, 1996), Chap. 7.

H. Kirchauer, “Photolithography Simulation“, PhD. Dissertation, Fakultät für Elektrotechnik, Technischen, Universität Wien . (1998). http://www.iue.tuwien.ac.at/phd/kirchauer/

F. Wyrowski, E. Kley, T. J. Nellissen, L. Wang, and S. Bühling, “Proximity printing by wave-optically designed masks,” Proc SPIE 4436, (2001).

S. Buhling, et al., “High resolution proximity printing by wave-optically designed complex transmission masks,” Proc SPIE 4404, (2001).

L. G. Neto, R. D. Mansano, G. A. Cirino, L. S. Zambom, and P. Verdonck, “Amorphous hidrogenated carbon film,” US Patent 7,381,452, June (2008).

L. G. Neto, G. A. Cirino, R. D. Mansano, P. S. P. Cardona, and P. Verdonck, “Hybrid phase and amplitude modulation proximity printing mask fabricated on DLC and SiO2 substrates,” Proc SPIE 4984, 18-28 (2003).

M. D. Levenson, “Using destructive optical interference in semiconductor lithography,” Opt. Photon. News, 30-35 Apr. (2006).

M. Shibuya, “Projection master for transmitted illumination,” Japanese Patent Gazette # Showa 62–50811, October 27, (1987).

G. Talor, “Transparent phase shift mask for fabrication of small feature sizes,” US Patent 6 933 085 B1, August 23, (2005).

K. Kukuchi, “Phase shift mask, method of exposure, and method of producing semiconductor devices”, US Patent Application US 2002/0177051 A1, August 03, (2002).

J. Turunen and F. Wyrowski, in Diffractive Optics for Industrial and Commercial Applications, 1st.ed, (Berlin: Akademi. Verlag, 1997), Chap. 1.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test, (SPIE Press: Washington, 2004), pp. 115–121.

T. J. Suleski, W. F. Delaney, and M. R. Feldman, “Fabricating optical elements using a photoresist formed from proximity printing of a gray level mask”, US Patent 6 638 667, October 28, 2003.

T. Lin, H. Yang and C. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing”, Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP’07), 11–15, (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic view of the optical field projected by the mask, when illuminated by a UV plane wave. The pattern is obtained by applying free space light propagation along the 50 micrometers distance.

Fig. 2
Fig. 2

Schematic diagram of the phenomenon of free space propagation, and its relation with frequency and image spaces, as well as mask and wafer planes.

Fig. 3
Fig. 3

Schematic view of the basic algorithm used for the calculations of the proposed phase shift diffractive photomask. The inverse propagation is computed and the resulting complex-valued distribution is mapped into three photolithographic masks.

Fig. 4
Fig. 4

Lithographic test structures used to show the basic idea of the complex-amplitude modulation proximity printing mask (a) Numerical reconstructed image of the desired light distribution; (b) amplitude A(x’,y’) and (c) phase ϕ(x’,y’) distributions of the resulting phase shift photomask.

Fig. 5
Fig. 5

Schematic representation in the complex plane of possible values of amplitude and phase considering (a) four phase-levels sampling; (b) five amplitude-levels sampling; (c) combination of previous values of phase and amplitude.

Fig. 6
Fig. 6

Subdivision of a cell, formed by 4 × 4 sub-cells. (a) structure of a particular cell that can modulate the phase between 0 and π/2, depending of the value of V; (b) structure of a window created over the phase cell of Fig. 9a, in order to modulate the amplitude of incident light between 0 and 1, depending of the value of U.

Fig. 7
Fig. 7

(a) Structure of a particular cell with complex transmittance of amplitude equal to 0.5 and phase equal to π/4; (b) all the possible value (black dots) of amplitude and phase within the first quadrant, as well as, the particular value of the cell of figure (a).

Fig. 8
Fig. 8

Optical transmittance of a 1500 nm thick a:C-H thin film (black), and a fused silica substrate (gray). The thin film presents 4% transparency at exposure wavelength, while being partially transparent in the visible region.

Fig. 9
Fig. 9

Schematic view of the entire process to fabricate the proposed diffractive phase shift proximity photomask.

Fig. 10
Fig. 10

(a) Photography of the fabricated phase shift diffractive photomask on a 3-inch fused silica wafer. The zoom in shows the whole test structure; (b) SEM picture of the whole test structure.

Fig. 11
Fig. 11

Schematic view of the experimental setup used to perform the exposure with a coherent, multiline argon laser.

Fig. 12
Fig. 12

SEM images of the resulting structures from the two kind of exposures. (a) proximity printing mode and (b) contact printing mode. The structures obtained from the proximity mode are much better defined.

Fig. 13
Fig. 13

SEM micrographs of the resulting structures obtained by using a partially coherent light source. (a) contact exposure. (b) 50 μm gap proximity exposure; (c) 100 μm gap proximity exposure.

Fig. 14
Fig. 14

SEM micrographs of part of the test structures with a detail of a line 1.5 μm wide by 82 μm length, patterned in (a) proximity (50 μm gap) and (b) contact modes. The line obtained by proximity exposure is clearly resolved while that obtained by contact exposure is barely resolved.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

W = γ λ d g
2 z 2 W ( f x , f y , z ) + ( 2 π λ ) 2 [ 1 ( λ f x ) 2 ( λ f y ) 2 ] W ( f x , f y , z ) = 0
W ( f x , f y , z ) = M ( f x , f y , 0 ) exp [ j 2 π λ z 1 ( λ f x ) 2 ( λ f y ) 2 ] , j = 1
H ( f x , f y ) = { exp [ j 2 π λ z 1 ( λ f x ) 2 ( λ f y ) 2 ] 0 otherwise for ( f x ) 2 + ( f y ) 2 < 1 λ
m ( x , y , z = 0 ) = 1 { W ( f x , f y , z = 50 μ m ) exp [ j 2 π λ z 1 ( λ f x ) 2 ( λ f y ) 2 ] }
m N ( x , y ) = β m ( x , y ) = A ( x , y ) exp [ j ϕ ( x , y ) ]
A ( x , y ) exp [ j ϕ ( x , y ) ] A k l ( x , y ) exp [ j θ k l ( x , y ) ]
m k l ( x , y ) = r e c t ( x M X , y N Y ) { k = M / 2 M / 2 1 l = N / 2 N / 2 1 r e c t ( x k X A k l ) [ r e c t ( y l Y Y ) + ( e j π / 2 1 ) r e c t ( y Y ( 1 2 θ k l π ) l Y Y 2 θ k l π ) ] }
M k l ( f x , f y ) = sin c ( M X f x , N Y f y ) M N X Y 2 { k = M / 2 M / 2 1 l = N / 2 N / 2 1 A k l sin c ( A k l f x ) e j 2 π k X f x [ sin c ( Y f x ) e j 2 π l Y f y + 2 θ k l π ( e j π / 2 1 ) × sin c ( Y 2 θ k l π f y ) e j 2 π Y ( 1 / 2 θ k l / π ) f y e j 2 π l Y f y ] }
M k l ( f x , f y ) = sin c ( M X f x , N Y f y ) M N X Y 2 { k = M / 2 M / 2 1 l = N / 2 N / 2 1 A k l [ 1 + 2 θ k l π ( e j π / 2 1 ) e j 2 π ( 1 / 2 θ k l / π ) n / N ] e j 2 π ( m k / M + n l / N ) }
2 π ( 1 2 θ k l π ) Y f y = 2 π ( 1 2 θ k l π ) n N
M k l ( f x , f y ) = sin c ( M X f x , N Y f y ) M N X Y 2 { k = M / 2 M / 2 1 l = N / 2 N / 2 1 A k l [ 1 + 2 θ k l π ( e j π / 2 1 ) ] e j 2 π ( m k / M + n l / N ) }
a e k l = | 1 + 2 θ k l π ( e j π / 2 1 ) | .
p e k l = | θ k l - a r g [ 1 + 2 θ k l π ( e j π / 2 1 ) ] | .
θ k l = ϕ ( k X , l Y ) .
A k l = 2 2 a ( k X , l Y ) a e k l .
d k l ( x , y ) = θ k l ( x , y ) 2 π λ ( n S i O 2 1 )
d ( P 1 , P 2 ) = 0.16 R λ ¯ ρ

Metrics