Abstract

We describe an all-electrical plasmon detection based on the near field coupling between plasmons and percolating electrons. It is the technique to electrically detect the local field enhancement from randomly distributed Cu nanoparticles coupled to a plasmon resonance. In addition, we revealed that plasmon-sensitivity is maximized at the percolation threshold, the minimum Cu particle surface coverage which can make the percolation path through the particles. Our detectors have a simple structure for easy fabrication and a high level of sensitivity to plasmon resonance.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Franke, T. J. Koplin, and U. Simon;,“Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
    [CrossRef] [PubMed]
  2. S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
    [CrossRef]
  3. T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002).
    [CrossRef]
  4. N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
    [CrossRef]
  5. P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
    [CrossRef]
  6. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
    [CrossRef]
  7. R. Parthasarathy, X.-M. Lin, and H. M. Jaeger, “Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior,” Phys. Rev. Lett. 87(18), 186807 (2001).
    [CrossRef]
  8. M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
    [CrossRef] [PubMed]
  9. R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
    [CrossRef]
  10. M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
    [CrossRef]
  11. S. Y. Xu, J. Xu, and M. L. Tian, “A low cost platform for linking transport properties to the structure of nanomaterials,” Nanotechnology 17(5), 1470–1475 (2006).
    [CrossRef]
  12. E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
    [CrossRef] [PubMed]
  13. S. Kirkpatrick, “Percolation and Conduction,” Rev. Mod. Phys. 45(4), 574–588 (1973).
    [CrossRef]
  14. C. Pennetta, L. Reggiani, and G. Trefan, “Scaling and universality in electrical failure of thin films,” Phys. Rev. Lett. 84(21), 5006–5009 (2000).
    [CrossRef] [PubMed]
  15. C. Pennetta, G. Trefan, and L. Reggiani, “Scaling law of resistance fluctuations in stationary random resistor networks,” Phys. Rev. Lett. 85(24), 5238–5241 (2000).
    [CrossRef] [PubMed]
  16. D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
    [CrossRef] [PubMed]
  17. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  18. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
    [CrossRef]
  19. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
    [CrossRef] [PubMed]
  20. A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles,” J. Appl. Phys. 94(10), 6988–6990 (2003).
    [CrossRef]
  21. V. K. S. Shante and S. Kirkpatrick, “An introduction to percolation theory,” Adv. Phys. 20(85), 325–357 (1971).
    [CrossRef]
  22. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  23. S. A. Maier, Plasmonics: Fundamentals and applications (Springer, New York, 2007).
  24. R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2-3), 73–179 (2000).
    [CrossRef]
  25. C. A. Neugebauer and M. B. Webb, “Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films,” J. Appl. Phys. 33(1), 74–82 (1962).
    [CrossRef]
  26. P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
    [CrossRef] [PubMed]

2010

P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

2009

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

2007

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

2006

S. Y. Xu, J. Xu, and M. L. Tian, “A low cost platform for linking transport properties to the structure of nanomaterials,” Nanotechnology 17(5), 1470–1475 (2006).
[CrossRef]

M. E. Franke, T. J. Koplin, and U. Simon;,“Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

2004

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

2003

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles,” J. Appl. Phys. 94(10), 6988–6990 (2003).
[CrossRef]

2002

T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002).
[CrossRef]

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
[CrossRef]

2001

R. Parthasarathy, X.-M. Lin, and H. M. Jaeger, “Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior,” Phys. Rev. Lett. 87(18), 186807 (2001).
[CrossRef]

2000

C. Pennetta, L. Reggiani, and G. Trefan, “Scaling and universality in electrical failure of thin films,” Phys. Rev. Lett. 84(21), 5006–5009 (2000).
[CrossRef] [PubMed]

C. Pennetta, G. Trefan, and L. Reggiani, “Scaling law of resistance fluctuations in stationary random resistor networks,” Phys. Rev. Lett. 85(24), 5238–5241 (2000).
[CrossRef] [PubMed]

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2-3), 73–179 (2000).
[CrossRef]

1973

S. Kirkpatrick, “Percolation and Conduction,” Rev. Mod. Phys. 45(4), 574–588 (1973).
[CrossRef]

1971

V. K. S. Shante and S. Kirkpatrick, “An introduction to percolation theory,” Adv. Phys. 20(85), 325–357 (1971).
[CrossRef]

1962

C. A. Neugebauer and M. B. Webb, “Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films,” J. Appl. Phys. 33(1), 74–82 (1962).
[CrossRef]

Afonso, C. N.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Agustsson, J. S.

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

Ahn, C. W.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

Banerjee, P.

P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Bauer, R. E.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
[CrossRef]

T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002).
[CrossRef]

Bernard, L.

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

Besnard, I.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
[CrossRef]

T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002).
[CrossRef]

Bonnell, D. A.

P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Buh, G.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Calame, M.

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

Chang, H.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Chen, H.-L.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Chen, K.-H.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Chen, L. Y.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Chen, L.-C.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Choi, H. J.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Choi, K. C.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

Conklin, D.

P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

del Coso, R.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Endo, T.

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Fedorovich, R. D.

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2-3), 73–179 (2000).
[CrossRef]

Feringa, B. L.

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Franke, M. E.

M. E. Franke, T. J. Koplin, and U. Simon;,“Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

Fukuta, K.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Gonzalo, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Guse, B.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
[CrossRef]

T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002).
[CrossRef]

Hamanaka, Y.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Han, T.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Heilmann, A.

A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles,” J. Appl. Phys. 94(10), 6988–6990 (2003).
[CrossRef]

Holleitner, A. W.

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

Hong, L.-S.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Hu, M.-S.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Huang, B.-R.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Jaeger, H. M.

R. Parthasarathy, X.-M. Lin, and H. M. Jaeger, “Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior,” Phys. Rev. Lett. 87(18), 186807 (2001).
[CrossRef]

Jeon, E.-K.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Kerman, K.

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Kiesow, A.

A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles,” J. Appl. Phys. 94(10), 6988–6990 (2003).
[CrossRef]

Kim, D.-K.

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Kim, J.-J.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Kirkpatrick, S.

S. Kirkpatrick, “Percolation and Conduction,” Rev. Mod. Phys. 45(4), 574–588 (1973).
[CrossRef]

V. K. S. Shante and S. Kirkpatrick, “An introduction to percolation theory,” Adv. Phys. 20(85), 325–357 (1971).
[CrossRef]

Kong, K.-J.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Koplin, T. J.

M. E. Franke, T. J. Koplin, and U. Simon;,“Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

Krasteva, N.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
[CrossRef]

Kudernac, T.

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

Kwon, Y.-S.

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Lee, J.-O.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Li, J.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Li, Y. G.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Liao, J.

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

Lin, X.-M.

R. Parthasarathy, X.-M. Lin, and H. M. Jaeger, “Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior,” Phys. Rev. Lett. 87(18), 186807 (2001).
[CrossRef]

Liu, Y.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Liz-Marzan, L. M.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Mangold, M. A.

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

Morris, J. E.

A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles,” J. Appl. Phys. 94(10), 6988–6990 (2003).
[CrossRef]

Mullen, K.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
[CrossRef]

Müllen, K.

T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002).
[CrossRef]

Mulvaney, P.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Nakamura, A.

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

Nanayakkara, S.

P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Naumovets, A. G.

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2-3), 73–179 (2000).
[CrossRef]

Neugebauer, C. A.

C. A. Neugebauer and M. B. Webb, “Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films,” J. Appl. Phys. 33(1), 74–82 (1962).
[CrossRef]

Park, T.-H.

P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Parthasarathy, R.

R. Parthasarathy, X.-M. Lin, and H. M. Jaeger, “Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior,” Phys. Rev. Lett. 87(18), 186807 (2001).
[CrossRef]

Pennetta, C.

C. Pennetta, G. Trefan, and L. Reggiani, “Scaling law of resistance fluctuations in stationary random resistor networks,” Phys. Rev. Lett. 85(24), 5238–5241 (2000).
[CrossRef] [PubMed]

C. Pennetta, L. Reggiani, and G. Trefan, “Scaling and universality in electrical failure of thin films,” Phys. Rev. Lett. 84(21), 5006–5009 (2000).
[CrossRef] [PubMed]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Qian, S. X.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Radehaus, C.

A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles,” J. Appl. Phys. 94(10), 6988–6990 (2003).
[CrossRef]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Reggiani, L.

C. Pennetta, G. Trefan, and L. Reggiani, “Scaling law of resistance fluctuations in stationary random resistor networks,” Phys. Rev. Lett. 85(24), 5238–5241 (2000).
[CrossRef] [PubMed]

C. Pennetta, L. Reggiani, and G. Trefan, “Scaling and universality in electrical failure of thin films,” Phys. Rev. Lett. 84(21), 5006–5009 (2000).
[CrossRef] [PubMed]

Requejo-Isidro, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Saito, M.

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Sathuluri, R. R.

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Schönenberger, C.

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

Seo, H.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Seong, H.

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Shante, V. K. S.

V. K. S. Shante and S. Kirkpatrick, “An introduction to percolation theory,” Adv. Phys. 20(85), 325–357 (1971).
[CrossRef]

Shen, C.-H.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Simon, U.

M. E. Franke, T. J. Koplin, and U. Simon;,“Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

Solis, J.

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

Tamiya, E.

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Therien, M. J.

P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Tian, M. L.

S. Y. Xu, J. Xu, and M. L. Tian, “A low cost platform for linking transport properties to the structure of nanomaterials,” Nanotechnology 17(5), 1470–1475 (2006).
[CrossRef]

Tomchuk, P. M.

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2-3), 73–179 (2000).
[CrossRef]

Trefan, G.

C. Pennetta, G. Trefan, and L. Reggiani, “Scaling law of resistance fluctuations in stationary random resistor networks,” Phys. Rev. Lett. 85(24), 5238–5241 (2000).
[CrossRef] [PubMed]

C. Pennetta, L. Reggiani, and G. Trefan, “Scaling and universality in electrical failure of thin films,” Phys. Rev. Lett. 84(21), 5006–5009 (2000).
[CrossRef] [PubMed]

van der Molen, S. J.

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

van Wees, B. J.

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

Vossmeyer, T.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
[CrossRef]

T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002).
[CrossRef]

Wang, S. Y.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Webb, M. B.

C. A. Neugebauer and M. B. Webb, “Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films,” J. Appl. Phys. 33(1), 74–82 (1962).
[CrossRef]

Weiss, C.

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

Xu, J.

S. Y. Xu, J. Xu, and M. L. Tian, “A low cost platform for linking transport properties to the structure of nanomaterials,” Nanotechnology 17(5), 1470–1475 (2006).
[CrossRef]

Xu, S. Y.

S. Y. Xu, J. Xu, and M. L. Tian, “A low cost platform for linking transport properties to the structure of nanomaterials,” Nanotechnology 17(5), 1470–1475 (2006).
[CrossRef]

Yamamura, S.

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Yang, K. Y.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

Yasuda, A.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
[CrossRef]

T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002).
[CrossRef]

You, G. J.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Zhou, P.

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

ACS Nano

P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J. Therien, and D. A. Bonnell, “Plasmon-induced electrical conduction in molecular devices,” ACS Nano 4(2), 1019–1025 (2010).
[CrossRef] [PubMed]

Adv. Mater.

T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, “Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties,” Adv. Mater. 14(3), 238–242 (2002).
[CrossRef]

Adv. Phys.

V. K. S. Shante and S. Kirkpatrick, “An introduction to percolation theory,” Adv. Phys. 20(85), 325–357 (1971).
[CrossRef]

Anal. Chem.

D.-K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y.-S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem. 79(5), 1855–1864 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner, “Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers,” Appl. Phys. Lett. 94(16), 161104 (2009).
[CrossRef]

P. Zhou, G. J. You, Y. G. Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian, “Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films,” Appl. Phys. Lett. 83(19), 3876–3878 (2003).
[CrossRef]

Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Appl. Phys. Lett. 84(24), 4938–4940 (2004).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

J. Appl. Phys.

C. A. Neugebauer and M. B. Webb, “Electrical Conduction Mechanism in Ultrathin, Evaporated Metal Films,” J. Appl. Phys. 33(1), 74–82 (1962).
[CrossRef]

A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles,” J. Appl. Phys. 94(10), 6988–6990 (2003).
[CrossRef]

R. del Coso, J. Requejo-Isidro, J. Solis, J. Gonzalo, and C. N. Afonso, “Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold,” J. Appl. Phys. 95(5), 2755–2762 (2004).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Nano Lett.

N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications,” Nano Lett. 2(5), 551–555 (2002).
[CrossRef]

S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberger, “Light-controlled conductance switching of ordered metal-molecule-metal devices,” Nano Lett. 9(1), 76–80 (2009).
[CrossRef]

Nanotechnology

S. Y. Xu, J. Xu, and M. L. Tian, “A low cost platform for linking transport properties to the structure of nanomaterials,” Nanotechnology 17(5), 1470–1475 (2006).
[CrossRef]

E.-K. Jeon, H. Seo, C. W. Ahn, H. Seong, H. J. Choi, J.-J. Kim, K.-J. Kong, G. Buh, H. Chang, and J.-O. Lee, “Resolving microscopic interfaces in Si(1-x)Ge(x) alloy nanowire devices,” Nanotechnology 20(11), 115708 (2009).
[CrossRef] [PubMed]

Nat. Mater.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[CrossRef] [PubMed]

Opt. Express

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

Phys. Rep.

R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, “Electron and light emission from island metal films and generation of hot electrons in nanoparticles,” Phys. Rep. 328(2-3), 73–179 (2000).
[CrossRef]

Phys. Rev. Lett.

R. Parthasarathy, X.-M. Lin, and H. M. Jaeger, “Electronic Transport in Metal Nanocrystal Arrays: The Effect of Structural Disorder on Scaling Behavior,” Phys. Rev. Lett. 87(18), 186807 (2001).
[CrossRef]

C. Pennetta, L. Reggiani, and G. Trefan, “Scaling and universality in electrical failure of thin films,” Phys. Rev. Lett. 84(21), 5006–5009 (2000).
[CrossRef] [PubMed]

C. Pennetta, G. Trefan, and L. Reggiani, “Scaling law of resistance fluctuations in stationary random resistor networks,” Phys. Rev. Lett. 85(24), 5238–5241 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys.

S. Kirkpatrick, “Percolation and Conduction,” Rev. Mod. Phys. 45(4), 574–588 (1973).
[CrossRef]

Small

M. E. Franke, T. J. Koplin, and U. Simon;,“Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

Other

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

S. A. Maier, Plasmonics: Fundamentals and applications (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Device structure: the Cu nanoparticle layer is deposited on a substrate with in-plane Au electrodes. (b) TEM images of randomly deposited Cu nanoparticles, showing some voids and an absence of order; the images from left to right are samples with a surface coverage of 55%, 64%, and 80%; all scale bars=200 nm. (c) TEM images (high resolution) of randomly deposited Cu nanoparticles, showing irregular spacing between particles; some particles are arranged closely together in a range of 3 nm to 5 nm; others are spaced from each other at a distance of more than 10 nm; all scale bars=30 nm in length.

Fig. 2
Fig. 2

(a) LSPR measurement results from samples with a surface coverage of 55%, 64%, and 80%; each samples has a different resonance peak (55%: 706 nm; 64%: 743 nm; 80%: 789 nm). (b) I-V characteristics of samples with a surface coverage of 55%, 64%, and 80%; the plot of f a= 64% shows a jump of about one order of magnitude (for the percolation threshold).

Fig. 3
Fig. 3

Photon-sensitive current from samples of different surface coverage, varying wavelengths of illuminated laser. (a, λexc= 514 nm. b, λexc= 633 nm. c, λexc= 725 nm. d, λexc= 920 nm.) As confirmed from Fig. 2, only the sample of f a= 64% meets at the percolation threshold condition. Every electrical properties were measured under the same bias of 2 V.

Fig. 4
Fig. 4

The room temperature percolation current response as a function of time to light illumination for nanoparticle-embedded devices. The shaded regions (513-nm: 20 min to 40 min, 633-nm: 60 min to 80 min, 750-nm: 100 min to 120 min, 920-nm: 140 min to 160 min) and the unshaded regions mark the periods when the light is off.

Fig. 5
Fig. 5

Calculated electric field intensity enhancement in the plane of the deposited nanoparticles (64% coverage sample). The local field intensity enhancement is depicted in the TEM image, shown in the inset of Fig. 5, using the linear color bar.

Fig. 6
Fig. 6

The data include the measured current enhancement ratio (where the dots indicate a 95-% confidence interval error bar) and the calculated current enhancement ratio (represented by line). The horizontal axis (wavelength) means the wavelength of the illuminated light.

Fig. 7
Fig. 7

(a) 55% coverage sample, measured current enhancement ratio and calculated value as a function of wavelengths to light illumination, (b) 80% coverage sampe, measured and calculated current enhancement ratio.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω , R ) = ε b u l k ( ω ) + ω p 2 ( 1 ω 2 + i ω Γ 1 ω 2 + i ω Γ ( R ) ) ,
σ exp ( E A k B T )
σ exp [ ( E A α E l o c ) k B T ] = exp ( E A k B T ) exp ( α E l o c k B T ) ,

Metrics