Abstract

THz emission was observed from the vertically aligned silicon nanowire (Si NW) arrays, upon the excitation using a fs Ti-sapphire laser pulse (800 nm). The Si NWs (length = 0.3 ~9 μm) were synthesized by the chemical etching of n-type silicon substrates. The THz emission exhibits significant length dependence; the intensity increases sharply up to a length of 3 μm and then almost saturates. Their efficient THz emission is attributed to strong local field enhancement by coherent surface plasmons, with distinctive geometry dependence.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
    [CrossRef]
  2. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
    [CrossRef] [PubMed]
  3. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  4. Z. M. Wang, In Lecture notes in nanoscale science and technology (Springer-Verlag, New York, 2008), Vol. 3, p175.
  5. D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, J. G. Cederberg, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Observation of THz emission from InAs nanowires,” in Proceedings of CLEO/QELS CMM2 (2008).
  6. S. He, X. Chen, X. Wu, G. Wang, and F. J. Zhao, “Enhanced Terahertz Emission From ZnSe Nono-Grain Surface,” J. Lightwave Technol. 26(11), 1519–1523 (2008).
    [CrossRef]
  7. M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86(2), 021904 (2005).
    [CrossRef]
  8. K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
    [CrossRef]
  9. K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
    [CrossRef]
  10. T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007).
    [CrossRef]
  11. Y. J. Hwang, A. Boukai, and P. Yang, “High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity,” Nano Lett. 9(1), 410–415 (2009).
    [CrossRef] [PubMed]
  12. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
    [CrossRef] [PubMed]
  13. E. A. Dalchiele, F. Martin, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, “Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells,” J. Electrochem. Soc. 156(5), K77–K81 (2009).
    [CrossRef]
  14. K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
    [CrossRef] [PubMed]
  15. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
    [CrossRef]
  16. J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
    [CrossRef]
  17. P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93(9), 091106 (2008).
    [CrossRef]
  18. X. C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
    [CrossRef]
  19. S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B 71, 901–904 (2000).
  20. R. Kersting, J. N. Heyman, G. Strasser, and K. Unterrainer, “Coherent plasmon in n-doped GaAs,” Phys. Rev. B 58(8), 4553–4559 (1998).
    [CrossRef]
  21. Q. Xiong, G. Chen, H. R. Gutierrez, and P. C. Eklund, “Raman scattering studies of individual polar semiconducting nanowires: phonon splitting and antenna effects,” Appl. Phys., A Mater. Sci. Process. 85(3), 299–305 (2006).
    [CrossRef]
  22. M. P. Hasselbeck, D. Seletskiy, L. R. Dawson, and M. Sheik-Bahae, “Direct observation of Landau damping in a solid state plasma,” Phys. Status Solidi 5(1c), 253–256 (2008).
    [CrossRef]
  23. K. Sakai, In Terahertz Optoelectroninc, Topics Appl. Phys. 97 (Springer-Verlag, Berlin Heidelberg, 2005), p. 63.

2009 (4)

Y. J. Hwang, A. Boukai, and P. Yang, “High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity,” Nano Lett. 9(1), 410–415 (2009).
[CrossRef] [PubMed]

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

E. A. Dalchiele, F. Martin, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, “Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells,” J. Electrochem. Soc. 156(5), K77–K81 (2009).
[CrossRef]

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

2008 (3)

S. He, X. Chen, X. Wu, G. Wang, and F. J. Zhao, “Enhanced Terahertz Emission From ZnSe Nono-Grain Surface,” J. Lightwave Technol. 26(11), 1519–1523 (2008).
[CrossRef]

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93(9), 091106 (2008).
[CrossRef]

M. P. Hasselbeck, D. Seletskiy, L. R. Dawson, and M. Sheik-Bahae, “Direct observation of Landau damping in a solid state plasma,” Phys. Status Solidi 5(1c), 253–256 (2008).
[CrossRef]

2007 (2)

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[CrossRef]

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007).
[CrossRef]

2006 (3)

Q. Xiong, G. Chen, H. R. Gutierrez, and P. C. Eklund, “Raman scattering studies of individual polar semiconducting nanowires: phonon splitting and antenna effects,” Appl. Phys., A Mater. Sci. Process. 85(3), 299–305 (2006).
[CrossRef]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[CrossRef]

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

2005 (1)

M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86(2), 021904 (2005).
[CrossRef]

2002 (2)

K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

2001 (1)

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B 71, 901–904 (2000).

1999 (1)

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

1998 (1)

R. Kersting, J. N. Heyman, G. Strasser, and K. Unterrainer, “Coherent plasmon in n-doped GaAs,” Phys. Rev. B 58(8), 4553–4559 (1998).
[CrossRef]

1992 (1)

X. C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
[CrossRef]

Andrä, G.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Auston, D. H.

X. C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
[CrossRef]

Beigang, R.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93(9), 091106 (2008).
[CrossRef]

Berger, A.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Boukai, A.

Y. J. Hwang, A. Boukai, and P. Yang, “High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity,” Nano Lett. 9(1), 410–415 (2009).
[CrossRef] [PubMed]

Brammer, K. S.

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

Brandt, M. S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[CrossRef]

Chen, G.

Q. Xiong, G. Chen, H. R. Gutierrez, and P. C. Eklund, “Raman scattering studies of individual polar semiconducting nanowires: phonon splitting and antenna effects,” Appl. Phys., A Mater. Sci. Process. 85(3), 299–305 (2006).
[CrossRef]

Chen, X.

S. He, X. Chen, X. Wu, G. Wang, and F. J. Zhao, “Enhanced Terahertz Emission From ZnSe Nono-Grain Surface,” J. Lightwave Technol. 26(11), 1519–1523 (2008).
[CrossRef]

Choi, C.

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

Christiansen, S. H.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Cobb, C. J.

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

Connelly, L. S.

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

Cravetchi, I. V.

M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86(2), 021904 (2005).
[CrossRef]

Cui, Y.

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Dalchiele, E. A.

E. A. Dalchiele, F. Martin, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, “Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells,” J. Electrochem. Soc. 156(5), K77–K81 (2009).
[CrossRef]

Dawson, L. R.

M. P. Hasselbeck, D. Seletskiy, L. R. Dawson, and M. Sheik-Bahae, “Direct observation of Landau damping in a solid state plasma,” Phys. Status Solidi 5(1c), 253–256 (2008).
[CrossRef]

Dhungel, S.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Duan, X.

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Eklund, P. C.

Q. Xiong, G. Chen, H. R. Gutierrez, and P. C. Eklund, “Raman scattering studies of individual polar semiconducting nanowires: phonon splitting and antenna effects,” Appl. Phys., A Mater. Sci. Process. 85(3), 299–305 (2006).
[CrossRef]

Falk, F.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Fedosejevs, R.

M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86(2), 021904 (2005).
[CrossRef]

Gangopadhyay, U.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Gao, S.-P.

K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

Gawlik, A.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Gosele, U.

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007).
[CrossRef]

Gu, P.

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B 71, 901–904 (2000).

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Gutierrez, H. R.

Q. Xiong, G. Chen, H. R. Gutierrez, and P. C. Eklund, “Raman scattering studies of individual polar semiconducting nanowires: phonon splitting and antenna effects,” Appl. Phys., A Mater. Sci. Process. 85(3), 299–305 (2006).
[CrossRef]

Hasselbeck, M. P.

M. P. Hasselbeck, D. Seletskiy, L. R. Dawson, and M. Sheik-Bahae, “Direct observation of Landau damping in a solid state plasma,” Phys. Status Solidi 5(1c), 253–256 (2008).
[CrossRef]

He, S.

S. He, X. Chen, X. Wu, G. Wang, and F. J. Zhao, “Enhanced Terahertz Emission From ZnSe Nono-Grain Surface,” J. Lightwave Technol. 26(11), 1519–1523 (2008).
[CrossRef]

Heyman, J. N.

R. Kersting, J. N. Heyman, G. Strasser, and K. Unterrainer, “Coherent plasmon in n-doped GaAs,” Phys. Rev. B 58(8), 4553–4559 (1998).
[CrossRef]

Hoyer, P.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93(9), 091106 (2008).
[CrossRef]

Hu, J.

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

Huang, Y.

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Hwang, Y. J.

Y. J. Hwang, A. Boukai, and P. Yang, “High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity,” Nano Lett. 9(1), 410–415 (2009).
[CrossRef] [PubMed]

Jin, S.

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

Kersting, R.

R. Kersting, J. N. Heyman, G. Strasser, and K. Unterrainer, “Coherent plasmon in n-doped GaAs,” Phys. Rev. B 58(8), 4553–4559 (1998).
[CrossRef]

Kim, K.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Kim, K.-H.

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Kley, E.-B.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93(9), 091106 (2008).
[CrossRef]

Kong, S. D.

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

Kono, S.

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B 71, 901–904 (2000).

Koynov, S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[CrossRef]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Lee, S.-T.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[CrossRef]

Leinen, D.

E. A. Dalchiele, F. Martin, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, “Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells,” J. Electrochem. Soc. 156(5), K77–K81 (2009).
[CrossRef]

Lieber, C. M.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

Loya, M.

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

Lu, A.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[CrossRef]

Mangalaraj, D.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Marotti, R. E.

E. A. Dalchiele, F. Martin, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, “Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells,” J. Electrochem. Soc. 156(5), K77–K81 (2009).
[CrossRef]

Martin, F.

E. A. Dalchiele, F. Martin, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, “Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells,” J. Electrochem. Soc. 156(5), K77–K81 (2009).
[CrossRef]

Nishikawa, J.

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007).
[CrossRef]

Odom, T. W.

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

Oh, S.

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

Parm, I.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Peng, K.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[CrossRef]

Peng, K.-Q.

K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

Plentz, J.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Ramos-Barrado, J. R.

E. A. Dalchiele, F. Martin, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, “Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells,” J. Electrochem. Soc. 156(5), K77–K81 (2009).
[CrossRef]

Reid, M.

M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86(2), 021904 (2005).
[CrossRef]

Sakai, K.

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B 71, 901–904 (2000).

Seletskiy, D.

M. P. Hasselbeck, D. Seletskiy, L. R. Dawson, and M. Sheik-Bahae, “Direct observation of Landau damping in a solid state plasma,” Phys. Status Solidi 5(1c), 253–256 (2008).
[CrossRef]

Senz, S.

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007).
[CrossRef]

Sheik-Bahae, M.

M. P. Hasselbeck, D. Seletskiy, L. R. Dawson, and M. Sheik-Bahae, “Direct observation of Landau damping in a solid state plasma,” Phys. Status Solidi 5(1c), 253–256 (2008).
[CrossRef]

Shimizu, T.

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007).
[CrossRef]

Shingubara, S.

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007).
[CrossRef]

Sirbu, L.

M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86(2), 021904 (2005).
[CrossRef]

Sivakov, V.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Strasser, G.

R. Kersting, J. N. Heyman, G. Strasser, and K. Unterrainer, “Coherent plasmon in n-doped GaAs,” Phys. Rev. B 58(8), 4553–4559 (1998).
[CrossRef]

Stutzmann, M.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[CrossRef]

Tani, M.

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B 71, 901–904 (2000).

Theuer, M.

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93(9), 091106 (2008).
[CrossRef]

Tiginyanu, I. M.

M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86(2), 021904 (2005).
[CrossRef]

Unterrainer, K.

R. Kersting, J. N. Heyman, G. Strasser, and K. Unterrainer, “Coherent plasmon in n-doped GaAs,” Phys. Rev. B 58(8), 4553–4559 (1998).
[CrossRef]

Wang, G.

S. He, X. Chen, X. Wu, G. Wang, and F. J. Zhao, “Enhanced Terahertz Emission From ZnSe Nono-Grain Surface,” J. Lightwave Technol. 26(11), 1519–1523 (2008).
[CrossRef]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Wong, N.-B.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[CrossRef]

Wu, X.

S. He, X. Chen, X. Wu, G. Wang, and F. J. Zhao, “Enhanced Terahertz Emission From ZnSe Nono-Grain Surface,” J. Lightwave Technol. 26(11), 1519–1523 (2008).
[CrossRef]

Xie, T.

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007).
[CrossRef]

Xiong, Q.

Q. Xiong, G. Chen, H. R. Gutierrez, and P. C. Eklund, “Raman scattering studies of individual polar semiconducting nanowires: phonon splitting and antenna effects,” Appl. Phys., A Mater. Sci. Process. 85(3), 299–305 (2006).
[CrossRef]

Yan, Y.-J.

K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

Yang, P.

Y. J. Hwang, A. Boukai, and P. Yang, “High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity,” Nano Lett. 9(1), 410–415 (2009).
[CrossRef] [PubMed]

Yi, J.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Yoo, J.

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Zhang, M.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[CrossRef]

Zhang, R.

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[CrossRef]

Zhang, X. C.

X. C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
[CrossRef]

Zhao, F. J.

S. He, X. Chen, X. Wu, G. Wang, and F. J. Zhao, “Enhanced Terahertz Emission From ZnSe Nono-Grain Surface,” J. Lightwave Technol. 26(11), 1519–1523 (2008).
[CrossRef]

Zhu, J.

K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

Acc. Chem. Res. (1)

J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999).
[CrossRef]

Adv. Mater. (2)

K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14(16), 1164–1167 (2002).
[CrossRef]

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Array on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater. 19(7), 917–920 (2007).
[CrossRef]

Appl. Phys. B (1)

S. Kono, P. Gu, M. Tani, and K. Sakai, “Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces,” Appl. Phys. B 71, 901–904 (2000).

Appl. Phys. Lett. (4)

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[CrossRef]

P. Hoyer, M. Theuer, R. Beigang, and E.-B. Kley, “Terahertz emission from black silicon,” Appl. Phys. Lett. 93(9), 091106 (2008).
[CrossRef]

K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee, “Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching,” Appl. Phys. Lett. 90(16), 163123 (2007).
[CrossRef]

M. Reid, I. V. Cravetchi, R. Fedosejevs, I. M. Tiginyanu, and L. Sirbu, “Enhanced terahertz emission from porous InP (111) membranes,” Appl. Phys. Lett. 86(2), 021904 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Q. Xiong, G. Chen, H. R. Gutierrez, and P. C. Eklund, “Raman scattering studies of individual polar semiconducting nanowires: phonon splitting and antenna effects,” Appl. Phys., A Mater. Sci. Process. 85(3), 299–305 (2006).
[CrossRef]

J. Appl. Phys. (1)

X. C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71(1), 326–338 (1992).
[CrossRef]

J. Electrochem. Soc. (1)

E. A. Dalchiele, F. Martin, D. Leinen, R. E. Marotti, and J. R. Ramos-Barrado, “Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells,” J. Electrochem. Soc. 156(5), K77–K81 (2009).
[CrossRef]

J. Lightwave Technol. (1)

S. He, X. Chen, X. Wu, G. Wang, and F. J. Zhao, “Enhanced Terahertz Emission From ZnSe Nono-Grain Surface,” J. Lightwave Technol. 26(11), 1519–1523 (2008).
[CrossRef]

Nano Lett. (3)

K. S. Brammer, C. Choi, S. Oh, C. J. Cobb, L. S. Connelly, M. Loya, S. D. Kong, and S. Jin, “Antibiofouling, sustained antibiotic release by Si nanowire templates,” Nano Lett. 9(10), 3570–3574 (2009).
[CrossRef] [PubMed]

Y. J. Hwang, A. Boukai, and P. Yang, “High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity,” Nano Lett. 9(1), 410–415 (2009).
[CrossRef] [PubMed]

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9(4), 1549–1554 (2009).
[CrossRef] [PubMed]

Nature (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (1)

R. Kersting, J. N. Heyman, G. Strasser, and K. Unterrainer, “Coherent plasmon in n-doped GaAs,” Phys. Rev. B 58(8), 4553–4559 (1998).
[CrossRef]

Phys. Status Solidi (1)

M. P. Hasselbeck, D. Seletskiy, L. R. Dawson, and M. Sheik-Bahae, “Direct observation of Landau damping in a solid state plasma,” Phys. Status Solidi 5(1c), 253–256 (2008).
[CrossRef]

Science (1)

Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294(5545), 1313–1317 (2001).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. Yoo, I. Parm, U. Gangopadhyay, K. Kim, S. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Other (3)

Z. M. Wang, In Lecture notes in nanoscale science and technology (Springer-Verlag, New York, 2008), Vol. 3, p175.

D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, J. G. Cederberg, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Observation of THz emission from InAs nanowires,” in Proceedings of CLEO/QELS CMM2 (2008).

K. Sakai, In Terahertz Optoelectroninc, Topics Appl. Phys. 97 (Springer-Verlag, Berlin Heidelberg, 2005), p. 63.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics