Abstract

We have investigated for the first time the anomalous refractive effects of a photonic crystal (PhC) formed by holographic lithography (HL) with triangular rods arranged in a honeycomb lattice in air. Possibilities of left-handed negative refraction and superlens are discussed for the case of TM2 band with the index contrast n = 3.4:1. In contrast to the conventional honeycomb PhC made of regular rods in air, the HL PhCs show left-handed negative refraction over a wider and higher frequency range with high transmissivity (>90%), and the effective indices quite close to −1 for a wide range of incident angles with a larger all-angle left-handed negative refraction (AALNR) frequency range (Δω/ω ≈14.8%). Calculations and FDTD simulations demonstrate the high-performance negative refraction properties can happen in the holographic structures for a wide filling ratio and can be modulated by changing the filling ratio easily.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “Electrodynamics of Substances with Simultaneously Negative Values of Sigma and Mu,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
    [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  5. K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, “Three-dimensional light focusing in inverse opal photonic crystals,” Phys. Rev. B 75(11), 115108 (2007).
    [CrossRef]
  6. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
    [CrossRef] [PubMed]
  7. G. Sun, A. S. Jugessur, and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances,” Opt. Express 14(15), 6755–6765 (2006).
    [CrossRef] [PubMed]
  8. L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap,” J. Opt. Soc. Am. B 23(8), 1708–1711 (2006).
    [CrossRef]
  9. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
    [CrossRef]
  10. R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals,” Phys. Rev. B 73(16), 165310 (2006).
    [CrossRef]
  11. T. Asatsuma and T. Baba, “Aberration reduction and unique light focusing in a photonic crystal negative refractive lens,” Opt. Express 16(12), 8711–8719 (2008).
    [CrossRef] [PubMed]
  12. L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
    [CrossRef] [PubMed]
  13. X. Y. Ao and S. L. He, “Three-dimensional photonic crystal of negative refraction achieved by interference lithography,” Opt. Lett. 29(21), 2542–2544 (2004).
    [CrossRef] [PubMed]
  14. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
    [CrossRef] [PubMed]
  15. S. D. Gedney, “An Anisotropic PML Absorbing Media for FDTD Simulation of Fields in Lossy Dispersive Media,” Electromagnetics 16(4), 399–415 (1996).
    [CrossRef]
  16. X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11(9), 1050–1055 (2003).
    [CrossRef] [PubMed]
  17. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  18. S. Inoue and Y. Aoyagi, “Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding,” Phys. Rev. B 69(20), 205109 (2004).
    [CrossRef]
  19. K. Sakoda, Optical Properties of Photonic Crystals, Springer Series in Optical Sciences 80 (Springer-Verlag, Berlin, 2001).
  20. T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31(18), 2786–2788 (2006).
    [CrossRef] [PubMed]
  21. S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystals slab with negative refraction,” Appl. Phys. Lett. 85(19), 4269–4271 (2004).
    [CrossRef]

2009

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

2008

T. Asatsuma and T. Baba, “Aberration reduction and unique light focusing in a photonic crystal negative refractive lens,” Opt. Express 16(12), 8711–8719 (2008).
[CrossRef] [PubMed]

2007

K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, “Three-dimensional light focusing in inverse opal photonic crystals,” Phys. Rev. B 75(11), 115108 (2007).
[CrossRef]

2006

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

G. Sun, A. S. Jugessur, and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances,” Opt. Express 14(15), 6755–6765 (2006).
[CrossRef] [PubMed]

L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap,” J. Opt. Soc. Am. B 23(8), 1708–1711 (2006).
[CrossRef]

R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals,” Phys. Rev. B 73(16), 165310 (2006).
[CrossRef]

T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31(18), 2786–2788 (2006).
[CrossRef] [PubMed]

2005

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[CrossRef]

2004

X. Y. Ao and S. L. He, “Three-dimensional photonic crystal of negative refraction achieved by interference lithography,” Opt. Lett. 29(21), 2542–2544 (2004).
[CrossRef] [PubMed]

S. Inoue and Y. Aoyagi, “Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding,” Phys. Rev. B 69(20), 205109 (2004).
[CrossRef]

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystals slab with negative refraction,” Appl. Phys. Lett. 85(19), 4269–4271 (2004).
[CrossRef]

2003

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11(9), 1050–1055 (2003).
[CrossRef] [PubMed]

2002

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

1996

S. D. Gedney, “An Anisotropic PML Absorbing Media for FDTD Simulation of Fields in Lossy Dispersive Media,” Electromagnetics 16(4), 399–415 (1996).
[CrossRef]

1990

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

1968

V. G. Veselago, “Electrodynamics of Substances with Simultaneously Negative Values of Sigma and Mu,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Ao, X. Y.

X. Y. Ao and S. L. He, “Three-dimensional photonic crystal of negative refraction achieved by interference lithography,” Opt. Lett. 29(21), 2542–2544 (2004).
[CrossRef] [PubMed]

Aoyagi, Y.

S. Inoue and Y. Aoyagi, “Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding,” Phys. Rev. B 69(20), 205109 (2004).
[CrossRef]

Asatsuma, T.

T. Asatsuma and T. Baba, “Aberration reduction and unique light focusing in a photonic crystal negative refractive lens,” Opt. Express 16(12), 8711–8719 (2008).
[CrossRef] [PubMed]

Baba, T.

T. Asatsuma and T. Baba, “Aberration reduction and unique light focusing in a photonic crystal negative refractive lens,” Opt. Express 16(12), 8711–8719 (2008).
[CrossRef] [PubMed]

T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31(18), 2786–2788 (2006).
[CrossRef] [PubMed]

Cai, L. Z.

L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap,” J. Opt. Soc. Am. B 23(8), 1708–1711 (2006).
[CrossRef]

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11(9), 1050–1055 (2003).
[CrossRef] [PubMed]

Campbell, M.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Cheng, B. Y.

K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, “Three-dimensional light focusing in inverse opal photonic crystals,” Phys. Rev. B 75(11), 115108 (2007).
[CrossRef]

Dahlem, M. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Denning, R. G.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Dong, G. Y.

L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap,” J. Opt. Soc. Am. B 23(8), 1708–1711 (2006).
[CrossRef]

Eom, K. S.

T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31(18), 2786–2788 (2006).
[CrossRef] [PubMed]

Feng, C. S.

L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap,” J. Opt. Soc. Am. B 23(8), 1708–1711 (2006).
[CrossRef]

Feng, S.

K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, “Three-dimensional light focusing in inverse opal photonic crystals,” Phys. Rev. B 75(11), 115108 (2007).
[CrossRef]

Gajic, R.

R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals,” Phys. Rev. B 73(16), 165310 (2006).
[CrossRef]

Gan, L.

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

Gedney, S. D.

S. D. Gedney, “An Anisotropic PML Absorbing Media for FDTD Simulation of Fields in Lossy Dispersive Media,” Electromagnetics 16(4), 399–415 (1996).
[CrossRef]

Harrison, M. T.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

He, S. L.

X. Y. Ao and S. L. He, “Three-dimensional photonic crystal of negative refraction achieved by interference lithography,” Opt. Lett. 29(21), 2542–2544 (2004).
[CrossRef] [PubMed]

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystals slab with negative refraction,” Appl. Phys. Lett. 85(19), 4269–4271 (2004).
[CrossRef]

Hingerl, K.

R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals,” Phys. Rev. B 73(16), 165310 (2006).
[CrossRef]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Ibanescu, M.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Inoue, S.

S. Inoue and Y. Aoyagi, “Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding,” Phys. Rev. B 69(20), 205109 (2004).
[CrossRef]

Ippen, E. P.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[CrossRef]

Johnson, S. G.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[CrossRef]

Jugessur, A. S.

G. Sun, A. S. Jugessur, and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances,” Opt. Express 14(15), 6755–6765 (2006).
[CrossRef] [PubMed]

Kirk, A. G.

G. Sun, A. S. Jugessur, and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances,” Opt. Express 14(15), 6755–6765 (2006).
[CrossRef] [PubMed]

Kolodziejski, L. A.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Kuchar, F.

R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals,” Phys. Rev. B 73(16), 165310 (2006).
[CrossRef]

Li, J. Y.

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

Li, Z. Y.

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, “Three-dimensional light focusing in inverse opal photonic crystals,” Phys. Rev. B 75(11), 115108 (2007).
[CrossRef]

Liu, Q.

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11(9), 1050–1055 (2003).
[CrossRef] [PubMed]

Liu, Y. Z.

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

Luo, C. Y.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[CrossRef]

Matsumoto, T.

T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31(18), 2786–2788 (2006).
[CrossRef] [PubMed]

Meisels, R.

R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals,” Phys. Rev. B 73(16), 165310 (2006).
[CrossRef]

Meng, X. F.

L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap,” J. Opt. Soc. Am. B 23(8), 1708–1711 (2006).
[CrossRef]

Pendry, J.

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Petrich, G. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Qiu, M.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystals slab with negative refraction,” Appl. Phys. Lett. 85(19), 4269–4271 (2004).
[CrossRef]

Rakich, P. T.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[CrossRef]

Ren, K.

K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, “Three-dimensional light focusing in inverse opal photonic crystals,” Phys. Rev. B 75(11), 115108 (2007).
[CrossRef]

Ren, X. B.

K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, “Three-dimensional light focusing in inverse opal photonic crystals,” Phys. Rev. B 75(11), 115108 (2007).
[CrossRef]

Ruan, Z. C.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystals slab with negative refraction,” Appl. Phys. Lett. 85(19), 4269–4271 (2004).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sharp, D. N.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shen, X. X.

L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap,” J. Opt. Soc. Am. B 23(8), 1708–1711 (2006).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Soljacic, M.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Sun, G.

G. Sun, A. S. Jugessur, and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances,” Opt. Express 14(15), 6755–6765 (2006).
[CrossRef] [PubMed]

Tandon, S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Turberfield, A. J.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “Electrodynamics of Substances with Simultaneously Negative Values of Sigma and Mu,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Xiao, S. S.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystals slab with negative refraction,” Appl. Phys. Lett. 85(19), 4269–4271 (2004).
[CrossRef]

Yang, X. L.

L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap,” J. Opt. Soc. Am. B 23(8), 1708–1711 (2006).
[CrossRef]

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11(9), 1050–1055 (2003).
[CrossRef] [PubMed]

Zhang, D. Z.

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, “Three-dimensional light focusing in inverse opal photonic crystals,” Phys. Rev. B 75(11), 115108 (2007).
[CrossRef]

Zhang, Z. B.

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystals slab with negative refraction,” Appl. Phys. Lett. 85(19), 4269–4271 (2004).
[CrossRef]

Electromagnetics

S. D. Gedney, “An Anisotropic PML Absorbing Media for FDTD Simulation of Fields in Lossy Dispersive Media,” Electromagnetics 16(4), 399–415 (1996).
[CrossRef]

J. Opt. Soc. Am. B

L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng, “Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap,” J. Opt. Soc. Am. B 23(8), 1708–1711 (2006).
[CrossRef]

Nat. Mater.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Nature

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Opt. Express

X. L. Yang, L. Z. Cai, and Q. Liu, “Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,” Opt. Express 11(9), 1050–1055 (2003).
[CrossRef] [PubMed]

T. Asatsuma and T. Baba, “Aberration reduction and unique light focusing in a photonic crystal negative refractive lens,” Opt. Express 16(12), 8711–8719 (2008).
[CrossRef] [PubMed]

L. Gan, Y. Z. Liu, J. Y. Li, Z. B. Zhang, D. Z. Zhang, and Z. Y. Li, “Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm,” Opt. Express 17(12), 9962–9970 (2009).
[CrossRef] [PubMed]

G. Sun, A. S. Jugessur, and A. G. Kirk, “Imaging properties of dielectric photonic crystal slabs for large object distances,” Opt. Express 14(15), 6755–6765 (2006).
[CrossRef] [PubMed]

Opt. Lett.

X. Y. Ao and S. L. He, “Three-dimensional photonic crystal of negative refraction achieved by interference lithography,” Opt. Lett. 29(21), 2542–2544 (2004).
[CrossRef] [PubMed]

T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31(18), 2786–2788 (2006).
[CrossRef] [PubMed]

Phys. Rev. B

S. Inoue and Y. Aoyagi, “Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding,” Phys. Rev. B 69(20), 205109 (2004).
[CrossRef]

C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 201104 (2002).
[CrossRef]

R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, “All-angle left-handed negative refraction in Kagomé and honeycomb lattice photonic crystals,” Phys. Rev. B 73(16), 165310 (2006).
[CrossRef]

K. Ren, Z. Y. Li, X. B. Ren, S. Feng, B. Y. Cheng, and D. Z. Zhang, “Three-dimensional light focusing in inverse opal photonic crystals,” Phys. Rev. B 75(11), 115108 (2007).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Rep. Prog. Phys.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[CrossRef]

Science

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “Electrodynamics of Substances with Simultaneously Negative Values of Sigma and Mu,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Other

K. Sakoda, Optical Properties of Photonic Crystals, Springer Series in Optical Sciences 80 (Springer-Verlag, Berlin, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Variation of the shape and size of the cross section of dielectric columns with different I t. (a) I t = 1.75, f = 10.1%; (b) I t = 2.0, f = 25.6%; (c) I t = 2.1, f = 32.2%.

Fig. 2
Fig. 2

Dispersion relation for TM polarized electromagnetic wave in the HL honeycomb PhC with I t = 2.0 in the four lowest bands.

Fig. 3
Fig. 3

EFCs plot and wave vector diagram of TM2 band. f = 0.348 in air and frequency range of 0.3 to 0.39 with 0.01 step.

Fig. 4
Fig. 4

Effective index of the second band vs. the normalized frequency.

Fig. 5
Fig. 5

Relation between the filling ratio and the frequency range of anomalous refractive effect.

Fig. 6
Fig. 6

(a) Schematic view of the HL PhC slab with the trigonal dielectric flange; and the wave patterns of negative refractions for different incident angles of (b) θ = 30° and (c) θ = 60°.

Fig. 7
Fig. 7

Field patterns for the flat superlens. The object distance is 8.5a (a) and 3.5a (b) for the interface normal to ГM direction, and (c) 3.5a for the interface normal to ГK direction.

Fig. 8
Fig. 8

The normalized transmission (red line) and reflection (blue line) spectra of the HL honeycomb PhC with f = 10.1%. The PhC superlens (n eff = −1) occurs at ω = 0.424 (arrow).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = 3 + cos [ 2 π a ( x y 3 ) ] + cos [ 2 π a ( x + y 3 ) ] + cos ( 4 π 3 a y ) .

Metrics