Abstract

We show how time-resolved measurements of the diffuse light transmitted through a thick scattering slab can be performed with a standard CCD camera, thanks to an interferometric protocol. Time-resolved correlations measured at a fixed photon transit time are also presented. The high number of pixels of the camera allows us to attain a quite good sensitivity for a reasonably low acquisition time.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
    [CrossRef] [PubMed]
  2. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
    [CrossRef] [PubMed]
  3. R. Esposito, S. De Nicola, M. Brambilla, A. Pifferi, L. Spinelli, and M. Lepore, “Depth dependence of estimated optical properties of a scattering inclusion by time-resolved contrast functions,” Opt. Express 16(22), 17667–17681 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17667 .
    [CrossRef] [PubMed]
  4. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
    [CrossRef] [PubMed]
  5. A. Liebert, H. Wabnitz, N. Zołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16(17), 13188–13202 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13188 .
    [CrossRef] [PubMed]
  6. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
    [CrossRef]
  7. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagniνres, and H. van den Bergh, “Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,” Appl. Opt. 37(4), 779–791 (1998).
    [CrossRef]
  8. L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
    [CrossRef] [PubMed]
  9. B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44(10), 1942–1947 (2005).
    [CrossRef] [PubMed]
  10. J.-M. Tualle, H. L. Nghiem, D. Ettori, R. Sablong, É. Tinet, and S. Avrillier, “Asymptotic behavior and inverse problem in layered scattering media,” J. Opt. Soc. Am. A 21(1), 24–34 (2004).
    [CrossRef]
  11. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15(21), 1179–1181 (1990).
    [CrossRef] [PubMed]
  12. G. Le Tolguenec, F. Devaux, and E. Lantz, “Imaging through thick biological tissues by parametric image amplification and phase conjugation,” J. Opt. 28(5), 214–217 (1997).
    [CrossRef]
  13. V. Chernomordik, A. Gandjbakhche, M. Lepore, R. Esposito, and I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6(4), 441–445 (2001).
    [CrossRef] [PubMed]
  14. L. Azizi, K. Zarychta, D. Ettori, E. Tinet, and J.-M. Tualle, “Ultimate spatial resolution with Diffuse Optical Tomography,” Opt. Express 17(14), 12132–12144 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-12132 .
    [CrossRef] [PubMed]
  15. A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999).
    [CrossRef] [PubMed]
  16. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
    [CrossRef] [PubMed]
  17. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
    [CrossRef] [PubMed]
  18. T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).
    [CrossRef] [PubMed]
  19. C. V. Zint, W. Uhring, M. Torregrossa, B. Cunin, and P. Poulet, “Streak camera: a multidetector for diffuse optical tomography,” Appl. Opt. 42(16), 3313–3320 (2003).
    [CrossRef] [PubMed]
  20. J.-M. Tualle, B. Gélébart, E. Tinet, S. Avrillier, and J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124(3–4), 216–221 (1996).
    [CrossRef]
  21. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9(6), 1143–1151 (2004).
    [CrossRef] [PubMed]
  22. D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
    [CrossRef] [PubMed]
  23. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
    [CrossRef] [PubMed]
  24. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38(16), 3670–3680 (1999).
    [CrossRef]
  25. J.-M. Tualle, “Method for analyzing a diffusing sample by time resolution measurement”, US Patent 6903825 (2001).
  26. J.-M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189(4–6), 211–220 (2001).
    [CrossRef]
  27. J.-M. Tualle, H. L. Nghiêm, C. Schäfauer, P. Berthaud, É. Tinet, D. Ettori, and S. Avrillier, “Time-resolved measurements from speckle interferometry,” Opt. Lett. 30(1), 50–52 (2005).
    [CrossRef] [PubMed]
  28. J.-M. Tualle, H. L. Nghiêm, M. Cheikh, D. Ettori, E. Tinet, and S. Avrillier, “Time-resolved diffusing wave spectroscopy beyond 300 transport mean free paths,” J. Opt. Soc. Am. A 23(6), 1452 (2006).
    [CrossRef]
  29. M. Cheikh, H. L. Nghiêm, D. Ettori, E. Tinet, S. Avrillier, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging,” Opt. Lett. 31(15), 2311–2313 (2006).
    [CrossRef] [PubMed]
  30. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B Condens. Matter 65(4), 409–413 (1987).
    [CrossRef]
  31. M. J. Stephen, “Temporal fluctuations in wave propagation in random media,” Phys. Rev. B Condens. Matter 37(1), 1–5 (1988).
    [CrossRef] [PubMed]
  32. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
    [CrossRef] [PubMed]
  33. X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7(1), 15–20 (1990).
    [CrossRef]
  34. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
    [CrossRef] [PubMed]
  35. J. Li, F. Jaillon, G. Dietsche, G. Maret, and T. Gisler, “Pulsation-resolved deep tissue dynamics measured with diffusing-wave spectroscopy,” Opt. Express 14(17), 7841–7851 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7841 .
    [CrossRef] [PubMed]
  36. L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express 16(20), 15514–15530 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15514 .
    [CrossRef] [PubMed]
  37. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt. 46(35), 8506–8514 (2007).
    [CrossRef] [PubMed]
  38. T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD- two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31(9), 1705–1708 (1995).
    [CrossRef]
  39. P. Gleyzes, A. C. Boccara, and H. Saint-Jalmes, “Multichannel Nomarski microscope with polarization modulation: performance and applications,” Opt. Lett. 22(20), 1529–1531 (1997).
    [CrossRef]
  40. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30(11), 1357–1359 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-11-1357 .
    [CrossRef] [PubMed]
  41. D. Ettori, K. Zarychta, E. Tinet, S. Avrillier, and J.-M. Tualle, “Time-resolved measurement of the scattered light with an interferometric method based on the use of a camera”, in Diffuse Optical Imaging of Tissue, R. Cubeddu ed., Vol. 6629 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2007), paper 6629_20.
  42. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing” (Prentice-Hall signal processing series, ISBN 0–13–754920–2, 1999).
  43. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
    [CrossRef] [PubMed]
  44. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
    [CrossRef] [PubMed]
  45. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005).
    [CrossRef] [PubMed]
  46. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  47. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12(11), 2532–2539 (1995).
    [CrossRef]
  48. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
    [CrossRef] [PubMed]
  49. M. A. Webster, T. D. Gerke, A. M. Weiner, and K. J. Webb, “Spectral and temporal speckle field measurements of a random medium,” Opt. Lett. 29(13), 1491–1493 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-13-1491 .
    [CrossRef] [PubMed]
  50. B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
    [CrossRef] [PubMed]
  51. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  52. F. G. Santamaria, Photonic crystals based on silica microsphères”, Ph. D. thesis:Institude de Ciencia de Materials de Madride, (2003).
  53. http://www.me.rochester.edu/courses/ME241/SE3.html

2009 (1)

2008 (5)

2007 (2)

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt. 46(35), 8506–8514 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (11)

J.-M. Tualle, H. L. Nghiêm, C. Schäfauer, P. Berthaud, É. Tinet, D. Ettori, and S. Avrillier, “Time-resolved measurements from speckle interferometry,” Opt. Lett. 30(1), 50–52 (2005).
[CrossRef] [PubMed]

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44(10), 1942–1947 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30(11), 1357–1359 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-11-1357 .
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef]

T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (1)

2002 (2)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

2001 (4)

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[CrossRef] [PubMed]

V. Chernomordik, A. Gandjbakhche, M. Lepore, R. Esposito, and I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6(4), 441–445 (2001).
[CrossRef] [PubMed]

J.-M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189(4–6), 211–220 (2001).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

1999 (2)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38(16), 3670–3680 (1999).
[CrossRef]

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (2)

P. Gleyzes, A. C. Boccara, and H. Saint-Jalmes, “Multichannel Nomarski microscope with polarization modulation: performance and applications,” Opt. Lett. 22(20), 1529–1531 (1997).
[CrossRef]

G. Le Tolguenec, F. Devaux, and E. Lantz, “Imaging through thick biological tissues by parametric image amplification and phase conjugation,” J. Opt. 28(5), 214–217 (1997).
[CrossRef]

1996 (2)

J.-M. Tualle, B. Gélébart, E. Tinet, S. Avrillier, and J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124(3–4), 216–221 (1996).
[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

1995 (2)

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD- two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31(9), 1705–1708 (1995).
[CrossRef]

R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12(11), 2532–2539 (1995).
[CrossRef]

1990 (2)

1989 (1)

1988 (2)

M. J. Stephen, “Temporal fluctuations in wave propagation in random media,” Phys. Rev. B Condens. Matter 37(1), 1–5 (1988).
[CrossRef] [PubMed]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

1987 (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B Condens. Matter 65(4), 409–413 (1987).
[CrossRef]

Andersson-Engels, S.

Aronson, R.

Arpaia, F.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[CrossRef] [PubMed]

Arridge, S. R.

T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

Atlan, M.

Austin, T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Avrillier, S.

M. Cheikh, H. L. Nghiêm, D. Ettori, E. Tinet, S. Avrillier, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging,” Opt. Lett. 31(15), 2311–2313 (2006).
[CrossRef] [PubMed]

J.-M. Tualle, H. L. Nghiêm, M. Cheikh, D. Ettori, E. Tinet, and S. Avrillier, “Time-resolved diffusing wave spectroscopy beyond 300 transport mean free paths,” J. Opt. Soc. Am. A 23(6), 1452 (2006).
[CrossRef]

J.-M. Tualle, H. L. Nghiêm, C. Schäfauer, P. Berthaud, É. Tinet, D. Ettori, and S. Avrillier, “Time-resolved measurements from speckle interferometry,” Opt. Lett. 30(1), 50–52 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

J.-M. Tualle, H. L. Nghiem, D. Ettori, R. Sablong, É. Tinet, and S. Avrillier, “Asymptotic behavior and inverse problem in layered scattering media,” J. Opt. Soc. Am. A 21(1), 24–34 (2004).
[CrossRef]

J.-M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189(4–6), 211–220 (2001).
[CrossRef]

J.-M. Tualle, B. Gélébart, E. Tinet, S. Avrillier, and J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124(3–4), 216–221 (1996).
[CrossRef]

Azizi, L.

Bassi, A.

Bays, R.

Berg, R.

Berthaud, P.

Bherer, L.

Boas, D. A.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Boccara, A. C.

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Brambilla, M.

Chabrier, R.

Chaikin, P. M.

X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7(1), 15–20 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Chance, B.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Cheikh, M.

Chernomordik, V.

V. Chernomordik, A. Gandjbakhche, M. Lepore, R. Esposito, and I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6(4), 441–445 (2001).
[CrossRef] [PubMed]

Chikoidze, E.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Choe, R.

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

Contini, D.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

Cova, S.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

Cubeddu, R.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38(16), 3670–3680 (1999).
[CrossRef]

Culver, J. P.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

Cunin, B.

Czerniecki, B. J.

Dalla Mora, A.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

Danesini, G.

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[CrossRef] [PubMed]

De Nicola, S.

Dehghani, H.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[CrossRef] [PubMed]

Del Bianco, S.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

Delfino, I.

V. Chernomordik, A. Gandjbakhche, M. Lepore, R. Esposito, and I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6(4), 441–445 (2001).
[CrossRef] [PubMed]

Delpy, D. T.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

Desjardins, M.

Devaux, F.

G. Le Tolguenec, F. Devaux, and E. Lantz, “Imaging through thick biological tissues by parametric image amplification and phase conjugation,” J. Opt. 28(5), 214–217 (1997).
[CrossRef]

Dietsche, G.

Dögnitz, N.

Douek, M.

T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).
[CrossRef] [PubMed]

Dunn, A. K.

Durduran, T.

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

Esposito, R.

R. Esposito, S. De Nicola, M. Brambilla, A. Pifferi, L. Spinelli, and M. Lepore, “Depth dependence of estimated optical properties of a scattering inclusion by time-resolved contrast functions,” Opt. Express 16(22), 17667–17681 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17667 .
[CrossRef] [PubMed]

V. Chernomordik, A. Gandjbakhche, M. Lepore, R. Esposito, and I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6(4), 441–445 (2001).
[CrossRef] [PubMed]

Ettori, D.

Everdell, N.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Everdell, N. L.

T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).
[CrossRef] [PubMed]

Firbank, M.

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

Forget, B. C.

Franceschini, M. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef]

Gagnon, L.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express 16(20), 15514–15530 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15514 .
[CrossRef] [PubMed]

Gandjbakhche, A.

V. Chernomordik, A. Gandjbakhche, M. Lepore, R. Esposito, and I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6(4), 441–445 (2001).
[CrossRef] [PubMed]

Gauthier, C.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

Gebauer, B.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

Gélébart, B.

J.-M. Tualle, B. Gélébart, E. Tinet, S. Avrillier, and J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124(3–4), 216–221 (1996).
[CrossRef]

Gerke, T. D.

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

Gibson, A.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Gibson, A. P.

T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).
[CrossRef] [PubMed]

Gisler, T.

Glanzmann, T.

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999).
[CrossRef] [PubMed]

Gleyzes, P.

Goy, P.

Grosenick, D.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Gross, M.

Hebden, J. C.

T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[CrossRef] [PubMed]

Heitger, F.

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD- two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31(9), 1705–1708 (1995).
[CrossRef]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Hillman, E. M. C.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[CrossRef] [PubMed]

Hoge, R. D.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

Holboke, M. J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

Huang, J. S.

Jaillon, F.

Jarlman, O.

Jehanne-Lacasse, J.

Kienle, A.

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagniνres, and H. van den Bergh, “Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,” Appl. Opt. 37(4), 779–791 (1998).
[CrossRef]

Lantz, E.

G. Le Tolguenec, F. Devaux, and E. Lantz, “Imaging through thick biological tissues by parametric image amplification and phase conjugation,” J. Opt. 28(5), 214–217 (1997).
[CrossRef]

Le Tolguenec, G.

G. Le Tolguenec, F. Devaux, and E. Lantz, “Imaging through thick biological tissues by parametric image amplification and phase conjugation,” J. Opt. 28(5), 214–217 (1997).
[CrossRef]

Lepore, M.

R. Esposito, S. De Nicola, M. Brambilla, A. Pifferi, L. Spinelli, and M. Lepore, “Depth dependence of estimated optical properties of a scattering inclusion by time-resolved contrast functions,” Opt. Express 16(22), 17667–17681 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17667 .
[CrossRef] [PubMed]

V. Chernomordik, A. Gandjbakhche, M. Lepore, R. Esposito, and I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6(4), 441–445 (2001).
[CrossRef] [PubMed]

Lesage, F.

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express 16(20), 15514–15530 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15514 .
[CrossRef] [PubMed]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

Li, J.

Liebert, A.

Macdonald, R.

Maret, G.

Martelli, F.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

Meek, J. H.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Moesta, K. T.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Möller, M.

Montcel, B.

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Mucke, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

Nghiem, H. L.

Nghiêm, H. L.

Ninck, M.

Obrig, H.

Ollivier, J. P.

J.-M. Tualle, B. Gélébart, E. Tinet, S. Avrillier, and J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124(3–4), 216–221 (1996).
[CrossRef]

Ortolf, C.

Patterson, M. S.

Pifferi, A.

R. Esposito, S. De Nicola, M. Brambilla, A. Pifferi, L. Spinelli, and M. Lepore, “Depth dependence of estimated optical properties of a scattering inclusion by time-resolved contrast functions,” Opt. Express 16(22), 17667–17681 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17667 .
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38(16), 3670–3680 (1999).
[CrossRef]

Pine, D. J.

X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7(1), 15–20 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Poulet, P.

Rajan, V.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

Ramaz, F.

Rinneberg, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

Sablong, R.

Saint-Jalmes, H.

Schäfauer, C.

Schlag, P. M.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[CrossRef] [PubMed]

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

Seitz, P.

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD- two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31(9), 1705–1708 (1995).
[CrossRef]

Selb, J.

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef]

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef]

Spinelli, L.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

R. Esposito, S. De Nicola, M. Brambilla, A. Pifferi, L. Spinelli, and M. Lepore, “Depth dependence of estimated optical properties of a scattering inclusion by time-resolved contrast functions,” Opt. Express 16(22), 17667–17681 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17667 .
[CrossRef] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

Spirig, T.

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD- two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31(9), 1705–1708 (1995).
[CrossRef]

Stamm, H.

Steenbergen, W.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

Steinbrink, J.

Stephen, M. J.

M. J. Stephen, “Temporal fluctuations in wave propagation in random media,” Phys. Rev. B Condens. Matter 37(1), 1–5 (1988).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef]

Stroszczynski, C.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

Svanberg, S.

Svensson, T.

Swartling, J.

Taroni, P.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38(16), 3670–3680 (1999).
[CrossRef]

Tchou, J. C.

Tinet, E.

Tinet, É.

Torregrossa, M.

Torricelli, A.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38(16), 3670–3680 (1999).
[CrossRef]

Tosi, A.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

Tualle, J. M.

Tualle, J.-M.

L. Azizi, K. Zarychta, D. Ettori, E. Tinet, and J.-M. Tualle, “Ultimate spatial resolution with Diffuse Optical Tomography,” Opt. Express 17(14), 12132–12144 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-12132 .
[CrossRef] [PubMed]

J.-M. Tualle, H. L. Nghiêm, M. Cheikh, D. Ettori, E. Tinet, and S. Avrillier, “Time-resolved diffusing wave spectroscopy beyond 300 transport mean free paths,” J. Opt. Soc. Am. A 23(6), 1452 (2006).
[CrossRef]

J.-M. Tualle, H. L. Nghiêm, C. Schäfauer, P. Berthaud, É. Tinet, D. Ettori, and S. Avrillier, “Time-resolved measurements from speckle interferometry,” Opt. Lett. 30(1), 50–52 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

J.-M. Tualle, H. L. Nghiem, D. Ettori, R. Sablong, É. Tinet, and S. Avrillier, “Asymptotic behavior and inverse problem in layered scattering media,” J. Opt. Soc. Am. A 21(1), 24–34 (2004).
[CrossRef]

J.-M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189(4–6), 211–220 (2001).
[CrossRef]

J.-M. Tualle, B. Gélébart, E. Tinet, S. Avrillier, and J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124(3–4), 216–221 (1996).
[CrossRef]

Uhring, W.

Valentini, G.

van den Bergh, H.

Van Leeuwen, T. G.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

van Veen, R. L. P.

Varghese, B.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

Vietze, O.

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD- two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31(9), 1705–1708 (1995).
[CrossRef]

Villringer, A.

Wabnitz, H.

A. Liebert, H. Wabnitz, N. Zołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16(17), 13188–13202 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13188 .
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

Wagni?res, G.

Wassermann, B.

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

Webb, K. J.

Webster, M. A.

Weiner, A. M.

Weitz, D. A.

X. L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7(1), 15–20 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Whelan, M.

Wilson, B. C.

Wolf, P. E.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B Condens. Matter 65(4), 409–413 (1987).
[CrossRef]

Wu, X. L.

Wyatt, J. S.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Yates, T. D.

T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

Yu, G.

Yusof, R. M.

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

Zaccanti, G.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

Zappa, F.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

Zarychta, K.

Zhou, C.

Zint, C. V.

Zolek, N.

Zubkov, L.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

Appl. Opt. (8)

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagniνres, and H. van den Bergh, “Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,” Appl. Opt. 37(4), 779–791 (1998).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38(16), 3670–3680 (1999).
[CrossRef]

C. V. Zint, W. Uhring, M. Torregrossa, B. Cunin, and P. Poulet, “Streak camera: a multidetector for diffuse optical tomography,” Appl. Opt. 42(16), 3313–3320 (2003).
[CrossRef] [PubMed]

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44(10), 1942–1947 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-11-2104 .
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt. 46(35), 8506–8514 (2007).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD- two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31(9), 1705–1708 (1995).
[CrossRef]

J. Biomed. Opt. (5)

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry,” J. Biomed. Opt. 12(2), 024020 (2007).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005).
[CrossRef]

L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008).
[CrossRef] [PubMed]

V. Chernomordik, A. Gandjbakhche, M. Lepore, R. Esposito, and I. Delfino, “Depth dependence of the analytical expression for the width of the point spread function (spatial resolution) in time-resolved transillumination,” J. Biomed. Opt. 6(4), 441–445 (2001).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

J. Opt. (1)

G. Le Tolguenec, F. Devaux, and E. Lantz, “Imaging through thick biological tissues by parametric image amplification and phase conjugation,” J. Opt. 28(5), 214–217 (1997).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

J.-M. Tualle, E. Tinet, and S. Avrillier, “A new and easy way to perform time-resolved measurements of the light scattered by a turbid medium,” Opt. Commun. 189(4–6), 211–220 (2001).
[CrossRef]

J.-M. Tualle, B. Gélébart, E. Tinet, S. Avrillier, and J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124(3–4), 216–221 (1996).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

M. Cheikh, H. L. Nghiêm, D. Ettori, E. Tinet, S. Avrillier, and J. M. Tualle, “Time-resolved diffusing wave spectroscopy applied to dynamic heterogeneity imaging,” Opt. Lett. 31(15), 2311–2313 (2006).
[CrossRef] [PubMed]

M. A. Webster, T. D. Gerke, A. M. Weiner, and K. J. Webb, “Spectral and temporal speckle field measurements of a random medium,” Opt. Lett. 29(13), 1491–1493 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-13-1491 .
[CrossRef] [PubMed]

J.-M. Tualle, H. L. Nghiêm, C. Schäfauer, P. Berthaud, É. Tinet, D. Ettori, and S. Avrillier, “Time-resolved measurements from speckle interferometry,” Opt. Lett. 30(1), 50–52 (2005).
[CrossRef] [PubMed]

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30(11), 1357–1359 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-11-1357 .
[CrossRef] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15(21), 1179–1181 (1990).
[CrossRef] [PubMed]

P. Gleyzes, A. C. Boccara, and H. Saint-Jalmes, “Multichannel Nomarski microscope with polarization modulation: performance and applications,” Opt. Lett. 22(20), 1529–1531 (1997).
[CrossRef]

Phys. Med. Biol. (9)

A. Kienle and T. Glanzmann, “In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model,” Phys. Med. Biol. 44(11), 2689–2702 (1999).
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001).
[CrossRef] [PubMed]

T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager,” Phys. Med. Biol. 50(11), 2503–2517 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients,” Phys. Med. Biol. 50(11), 2429–2449 (2005).
[CrossRef] [PubMed]

P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, “Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions,” Phys. Med. Biol. 50(11), 2469–2488 (2005).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol. 50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Phys. Rev. B Condens. Matter (1)

M. J. Stephen, “Temporal fluctuations in wave propagation in random media,” Phys. Rev. B Condens. Matter 37(1), 1–5 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[CrossRef] [PubMed]

Z. Phys. B Condens. Matter (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B Condens. Matter 65(4), 409–413 (1987).
[CrossRef]

Other (5)

J.-M. Tualle, “Method for analyzing a diffusing sample by time resolution measurement”, US Patent 6903825 (2001).

D. Ettori, K. Zarychta, E. Tinet, S. Avrillier, and J.-M. Tualle, “Time-resolved measurement of the scattered light with an interferometric method based on the use of a camera”, in Diffuse Optical Imaging of Tissue, R. Cubeddu ed., Vol. 6629 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2007), paper 6629_20.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing” (Prentice-Hall signal processing series, ISBN 0–13–754920–2, 1999).

F. G. Santamaria, Photonic crystals based on silica microsphères”, Ph. D. thesis:Institude de Ciencia de Materials de Madride, (2003).

http://www.me.rochester.edu/courses/ME241/SE3.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: two weak reflectivity (15%) beamsplitters (BS) constitute a two-arms interferometer; a lens (L1, f1 = −12mm) allows uniform illumination of the CCD camera; a lens (L2, f2 = + 50mm) project the transmitted scattered light on the camera, which registers the interferometric signal with a typical grain size of 3μm, that is of about half the pixel size; the value of the BS reflectivity was chosen in order to have both a correct detection of the reference beam and a maximal illumination of the scattering sample; a (3:1) anamorphic prisms pair allows to correct the ellipticity of the laser beam; an acousto-optic modulator (AOM) allows lock-in detection through the multiplication by the positive function ξ(t).

Fig. 2
Fig. 2

Temporal response of the setup, which has the expected position (δτ = 2060 ps) and width (270 ps).

Fig. 3
Fig. 3

Raw data recorded with the breast phantom illuminated by a 5 mW laser beam. The shot noise level (SNL) is indicated by a dotted line. The transmittance at its maximum is 15 times lower than the SNL. A spurious peak is surrounded by a dotted line.

Fig. 4
Fig. 4

(a)- Recorded transmittance as a function of the transit time, together with a theoretical fit (red line) based on diffusion approximation with extrapolated boundary conditions (the setup temporal response was included in the fitting; we have used an isotropic source at a depth z0 = 1/μ’s , and an extrapolated boundary condition at a distance zs = 2/μ’s [47]). (b)-same as (a) in a logarithmic scale.

Fig. 5
Fig. 5

Acquisition protocol for correlation measurements: the red curve symbolizes the wavelength modulation, and the blue curve represents the modulation function ξ(t), which is zero excepted on two modulation half-periods separated by a time interval pT.

Fig. 6
Fig. 6

Experimental values of ln[g1(t,τ)] for a transit time τ = 1,5ns and a correlation time t = pT (T = 2ms) with p running from 1 to 5. The red line is a fit, weighted according to the statistical error, by the function α t with α = −0.35 ± −0.015 ms −1 .

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Ref ( t , τ ) = sin 4 ( 2 π f t ) cos [ Δ Ω τ cos ( 2 π f t ) ]
S D C , i ( τ ) S D C , i + p ( τ ) g 2 ( 0 ) η e i 0 4 f Π ( τ τ ' ) φ ( τ ' ) g 1 ( p T / 2 , τ ' ) d τ '
g ( τ ) = 2 f 0 T / 2 Ref(t, τ )dt
ξ ( t ) = Ref( t , τ ) + Ref( t , 0 )
Q = ξ ( t ) i ( t ) d t
Δ Q = Q ( a ) Q ( b ) S D C ( a ) ( τ ) S D C ( b ) ( τ )
Δ 2 Q 2 S D C 2 ( τ ) = g 2 ( 0 ) η e i 0 2 f Π ( τ τ ' ) φ ( τ ' ) d τ ' = g 2 ( 0 ) η e i 0 2 f Π φ ( τ )
t 0 = d τ   130 p s =   1930 p s .
δ 2 S = δ i ( t ) δ i ( t ' ) d t d t ' = e i 0 0 T / 2 ξ ( t ) d t e i 0 g ( 0 ) T / 2
Δ 2 Q 2 S D C 2 ( τ ) + 2 δ 2 S = 2 e Q 0 { 1 + η g ( 0 ) 2     Π φ ( τ ) }
σ = 2 δ 2 S 2 N = 2 e Q 0 2 N
i x i Δ 2 x i i x i 2 2 α { 1 + η g ( 0 ) 2     Π φ ( τ ) }
Δ Q S D C , i ( a ) ( τ ) + δ S i ( a ) + S D C , i + p ( a ) ( τ ) + δ S i + p ( a ) S D C , j ( b ) ( τ ) δ S j ( a ) S D C , j + p ( b ) ( τ ) δ S j + p ( a )
Δ 2 Q = 4 ( δ 2 S + S D C 2 ( τ ) + S D C , i ( τ ) S D C , p ( τ ) )
i x i Δ 2 x i i x i 2 4 α { 1 + η g ( 0 ) 2 Π φ ( τ ) [ 1 + g 1 ( p T , τ ) ] }
ln g 1 ( t , τ ) = 2 μ ' s c τ t t 0
t 0 = 1 k 2 D B = λ 2 ( 2 π n ) 2 D B
D B = k B T a 6 π η g a
s 0 ω ( t ) = K ( ω ) s ˜ 0 [ ω ( t ) ]
s ω ( t ) = K ( ω ) s ˜ [ ω ( t ) , t ]
K 2 ( ω ) 2 f ( ω ) T
s ˜ [ ω 1 , 0 ] s ˜ * [ ω 2 , t ] ϕ ˜ ( ω , Ω , t )
i int ( t ) = S A K ( ω ) {     s 0 s ˜ * [ ω ( t ) , t ] + s 0 * s ˜ [ ω ( t ) , t ]     }
S D C , i S D C , i + p = S i 0 T d t 1 d t 2 d τ ' φ ( τ ' ) g 1 ( t 2 t 1 + p T / 2 , τ ' ) ×                                                                 [ Ref ( t 2 , τ τ ' ) + Ref ( t 2 , τ + τ ' ) ] [ Ref ( t 2 , τ τ ' ) + Ref ( t 2 , τ + τ ' ) ]
S D C , i S D C , i + p = S i 0 4 f φ ( τ ' ) g 1 ( p T / 2 , τ ' ) [ g ( τ τ ' ) + g ( τ + τ ' ) ] 2 d τ '

Metrics