Abstract

A novel method of designing ultra-large photon sieves in visible regime with multi-region structure is proposed and experimentally demonstrated. Design principle that is based on both phase matching and total pinhole area matching among regions is introduced. The focusing properties of the multi-region structure and the conventional monolithic structure of the same numerical aperture in terms of energy efficiency and the sidelobe suppression are compared. Two photon sieves of focal length 500mm and diameters 50mm and 125mm with respectively 3 and 4 regions at working wavelength 632.8nm are fabricated using UV lithography to validate the proposed method. Good performance of the multi-region photon sieves are evaluated by imaging test. The extension of the proposed method suggests a new concept of ring-to-ring design in terms of pinhole size and density of each individual ring for photon sieves with superior suppressed sidelobes towards ultra-large dimension, high numerical aperture that can be implemented with UV lithography which is otherwise impossible with e-beam technique.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Hyde, “Eyeglass. 1. Very large aperture diffractive telescopes,” Appl. Opt. 38(19), 4198–4212 (1999).
    [CrossRef]
  2. I. M. Barton, J. A. Britten, S. N. Dixit, L. J. Summers, I. M. Thomas, M. C. Rushford, K. Lu, R. A. Hyde, and M. D. Perry, “Fabrication of large-aperture lightweight diffractive lenses for use in space,” Appl. Opt. 40(4), 447–451 (2001).
    [CrossRef]
  3. G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007).
    [CrossRef] [PubMed]
  4. A. B. Meinel and M. P. Meinel, “Parametric dependencies of high-diffraction-order achromatized aplanatic configurations that employ circular or crossed-linear diffractive optical elements,” Appl. Opt. 41(34), 7155–7166 (2002).
    [CrossRef] [PubMed]
  5. A. B. Meinel and M. P. Meinel, “Large membrane space optics: imagery and aberrations of diffractive and holographic achromatized optical elements of high diffraction order,” Opt. Eng. 41(8), 1995 (2002).
    [CrossRef]
  6. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
    [CrossRef] [PubMed]
  7. Q. Cao and J. Jahns, “Focusing analysis of the pinhole photon sieve: individual far-field model,” J. Opt. Soc. Am. A 19(12), 2387–2393 (2002).
    [CrossRef]
  8. Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20(6), 1005–1012 (2003).
    [CrossRef]
  9. G. Andersen, “Large optical photon sieve,” Opt. Lett. 30(22), 2976–2978 (2005).
    [CrossRef] [PubMed]
  10. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A 22(2), 342–345 (2005).
    [CrossRef]
  11. F. Giménez, J. A. Monsoriu, W. D. Furlan, and A. Pons, “Fractal photon sieve,” Opt. Express 14(25), 11958–11963 (2006).
    [CrossRef] [PubMed]
  12. Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
    [CrossRef]
  13. C. Zhou, X. Dong, L. Shi, C. Wang, and C. Du, “Experimental study of a multiwavelength photon sieve designed by random-area-divided approach,” Appl. Opt. 48(8), 1619–1623 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (2)

2003 (1)

2002 (3)

2001 (2)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[CrossRef] [PubMed]

I. M. Barton, J. A. Britten, S. N. Dixit, L. J. Summers, I. M. Thomas, M. C. Rushford, K. Lu, R. A. Hyde, and M. D. Perry, “Fabrication of large-aperture lightweight diffractive lenses for use in space,” Appl. Opt. 40(4), 447–451 (2001).
[CrossRef]

1999 (1)

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[CrossRef] [PubMed]

Andersen, G.

Barbastathis, G.

Barton, I. M.

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[CrossRef] [PubMed]

Britten, J. A.

Cao, Q.

Dixit, S. N.

Dong, X.

Du, C.

C. Zhou, X. Dong, L. Shi, C. Wang, and C. Du, “Experimental study of a multiwavelength photon sieve designed by random-area-divided approach,” Appl. Opt. 48(8), 1619–1623 (2009).
[CrossRef] [PubMed]

Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[CrossRef]

Fu, Y.

Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[CrossRef]

Furlan, W. D.

Gao, Z.

Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[CrossRef]

Gil, D.

Giménez, F.

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[CrossRef] [PubMed]

Hyde, R. A.

Jahns, J.

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[CrossRef] [PubMed]

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[CrossRef] [PubMed]

Lu, K.

Luo, X.

Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[CrossRef]

Ma, J.

Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[CrossRef]

Meinel, A. B.

A. B. Meinel and M. P. Meinel, “Parametric dependencies of high-diffraction-order achromatized aplanatic configurations that employ circular or crossed-linear diffractive optical elements,” Appl. Opt. 41(34), 7155–7166 (2002).
[CrossRef] [PubMed]

A. B. Meinel and M. P. Meinel, “Large membrane space optics: imagery and aberrations of diffractive and holographic achromatized optical elements of high diffraction order,” Opt. Eng. 41(8), 1995 (2002).
[CrossRef]

Meinel, M. P.

A. B. Meinel and M. P. Meinel, “Large membrane space optics: imagery and aberrations of diffractive and holographic achromatized optical elements of high diffraction order,” Opt. Eng. 41(8), 1995 (2002).
[CrossRef]

A. B. Meinel and M. P. Meinel, “Parametric dependencies of high-diffraction-order achromatized aplanatic configurations that employ circular or crossed-linear diffractive optical elements,” Appl. Opt. 41(34), 7155–7166 (2002).
[CrossRef] [PubMed]

Menon, R.

Monsoriu, J. A.

Perry, M. D.

Pons, A.

Rushford, M. C.

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[CrossRef] [PubMed]

Shi, L.

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[CrossRef] [PubMed]

Smith, H. I.

Summers, L. J.

Thomas, I. M.

Tullson, D.

Wang, C.

Zhou, C.

Appl. Opt. (5)

J. Opt. Soc. Am. A (3)

Nature (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[CrossRef] [PubMed]

Opt. Eng. (1)

A. B. Meinel and M. P. Meinel, “Large membrane space optics: imagery and aberrations of diffractive and holographic achromatized optical elements of high diffraction order,” Opt. Eng. 41(8), 1995 (2002).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

Z. Gao, X. Luo, J. Ma, Y. Fu, and C. Du, “Imaging properties of photon sieve with a large aperture,” Opt. Laser Technol. 40(4), 614–618 (2008).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The effect of ratio factor d/w on the focused amplitude at focal point

Fig. 2
Fig. 2

(a) Amplitude distribution on focal plane from region 1, 2, and 3, as well as the summation of amplitude of region 1 and region 2, respectively; (b) Total intensity on focal plane of the optimized 3-region PS (black line), radius being equally divided PS (red line), and ring number being equally divided PS (blue line). The diameter of the photon sieve is 125mm, focal length is 500mm, and the working wavelength is 632.8nm.

Fig. 3
Fig. 3

(a) Comparison of the normalized intensity distribution on focal plane between a conventional monolithic photon sieve and a 3-region photon sieve; (b) comparison of pinhole size between a 3-region and a conventional monolithic photon sieve. Parameters are: diameter 50mm, focal length 500mm, wavelength 632.8 nm. Conventional photon sieve: black line; 3-region photon sieve: red line. (c) Comparison of the peak intensity on focal plane between a conventional monolithic photon sieve and a 3-region photon sieve with the same minimum pinhole size.

Fig. 4
Fig. 4

(a) Comparison of the normalized intensity distribution on focal plane between a 3-region and a 4-region photon sieve with the same diameter; and (b) Comparison of pinhole size between a 3-region and a 4-region photon sieve as well as a conventional monolithic photon sieve. The parameters are: diameter 125mm, focal length 500mm and wavelength 632.8 nm. Conventional photon sieve: black line; 3-region photon sieve: red line; and 4-region photon sieve: blue line.

Fig. 5
Fig. 5

(a) Normalized intensity distribution on focal plane; and (b) Pinhole size of a 4-region photon sieve and a conventional monolithic photon sieve. The parameters are: diameter 420mm, focal length 500mm, and wavelength 632.8 nm. Conventional: black line; 4-region: red line.

Fig. 6
Fig. 6

(a)Typical photo of a 3-region photon sieve with an aperture of 125mm; and (b)the microscopic imaging of pinholes showing the transition from region 2 to region 3.

Fig. 7
Fig. 7

Experimental setup for photon sieve characterization

Fig. 8
Fig. 8

(a) Intensity distributions of focal spots of a monolithic and a 3-region photon sieve with the same diameter of 50mm; (b) Target image produced by the conventional monolithic PS; and (c) Target image produced by 3-region PS of the same diameter as in (b). The other parameters are focal length 500 mm and working wavelength 632.8nm.

Fig. 9
Fig. 9

(a) Intensity distributions of focal spots of a 3-region and 4-region photon sieve with the same diameter of 125mm; (b) Target image produced by the 3-region PS; and (c) Target image produced by the 4-region PS of the same diameter as in (b). The other parameters are focal length 500 mm and working wavelength 632.8nm.

Tables (2)

Tables Icon

Table 1 The detailed design results of a 50mm- and a 125mm-aperture size with 3 sub-regions

Tables Icon

Table 2 The detailed design results of 125mm and 420mm-aperture size with 4 regions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r n 2 = 2 n f λ + n 2 λ 2
w n = λ f 2 r n
d min = λ 2 N A
F d w J 1 ( π d 2 w )

Metrics