Abstract

The impact of phase to amplitude noise conversion for QPSK, 16-QAM, and 64-QAM coherent optical systems are investigated with electronically-compensated chromatic dispersion (CD). The electronic equalizer is shown to convert the phase noise from the local oscillator (LO) to amplitude noise, limiting the amount of CD that can ideally be compensated digitally. The simulation results demonstrate that the performance of coherent systems can significantly be degraded with digitally compensated CD and LO phase noise. The maximum tolerable LO linewidth is also investigated for the different modulation formats and found to become increasingly stringent for longer transmission distance and higher symbol rate.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16, 804–817 (2008).
    [CrossRef] [PubMed]
  2. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol. 25(8), 2033–2043 (2007).
    [CrossRef]
  3. X. Chen, C. Kim, G. Li, and B. Zhou, “Numerical study of lumped dispersion compensation for 40-Gb/s returnto-zero differential phase-shift keying transmission,” IEEE Photon. Technol. Lett. 19(8), 568–570 (2007).
    [CrossRef]
  4. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear effects using digital back-propagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [CrossRef]
  5. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver," Opt. Express 15, 2120-2126 (2007)
    [CrossRef] [PubMed]
  6. C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O’Sullivan, “WDM Performance and PMD Tolerance of a Coherent 40-Gbit/s Dual-Polarization QPSK Transceiver,” J. Lightwave Technol. 26(1), 168–175 (2008).
    [CrossRef]
  7. H. Sun, K. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  8. W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718-15727 (2008).
    [CrossRef] [PubMed]
  9. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express,  17(6), 4815-4823 (2009).
    [CrossRef] [PubMed]
  10. J. G. Proakis, Digital Communications, 4th ed. (McGraw Hill, 2001).
  11. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for M -QAM Constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [CrossRef]
  12. I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
    [CrossRef]
  13. E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol. 25(9), 2675–2692 (2007).
    [CrossRef]
  14. R. Noe, “Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery,” J. Lightwave Technol. 23(2), 802–808 (2005).
    [CrossRef]
  15. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  16. L. G. Kazovsky, G. Kalogerakis, and W. T. Shaw, “Homodyne phase-shift-keying systems: past challenges and future opportunities,” J. Lightwave Technol. 24(12), 4876–4884 (2006).Q1
    [CrossRef]

2010 (1)

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

2009 (2)

2008 (6)

2007 (3)

X. Chen, C. Kim, G. Li, and B. Zhou, “Numerical study of lumped dispersion compensation for 40-Gb/s returnto-zero differential phase-shift keying transmission,” IEEE Photon. Technol. Lett. 19(8), 568–570 (2007).
[CrossRef]

E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol. 25(8), 2033–2043 (2007).
[CrossRef]

E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol. 25(9), 2675–2692 (2007).
[CrossRef]

2006 (1)

2005 (1)

Barros, D. J. F.

Chen, X.

X. Chen, C. Kim, G. Li, and B. Zhou, “Numerical study of lumped dispersion compensation for 40-Gb/s returnto-zero differential phase-shift keying transmission,” IEEE Photon. Technol. Lett. 19(8), 568–570 (2007).
[CrossRef]

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

Ho, K.-P.

Hoffmann, S.

Ip, E.

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

Kahn, J. M.

Kalogerakis, G.

Kazovsky, L. G.

Kim, C.

X. Chen, C. Kim, G. Li, and B. Zhou, “Numerical study of lumped dispersion compensation for 40-Gb/s returnto-zero differential phase-shift keying transmission,” IEEE Photon. Technol. Lett. 19(8), 568–570 (2007).
[CrossRef]

Laperle, C.

Lau, A. P. T.

Li, G.

X. Chen, C. Kim, G. Li, and B. Zhou, “Numerical study of lumped dispersion compensation for 40-Gb/s returnto-zero differential phase-shift keying transmission,” IEEE Photon. Technol. Lett. 19(8), 568–570 (2007).
[CrossRef]

McGhan, D.

Noe, R.

O’Sullivan, M.

Pfau, T.

Roberts, K.

Savory, S. J.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16, 804–817 (2008).
[CrossRef] [PubMed]

Shaw, W. T.

Shieh, W.

Sun, H.

Villeneuve, B.

Wu, K.

Xie, C.

Zhang, Z.

Zhou, B.

X. Chen, C. Kim, G. Li, and B. Zhou, “Numerical study of lumped dispersion compensation for 40-Gb/s returnto-zero differential phase-shift keying transmission,” IEEE Photon. Technol. Lett. 19(8), 568–570 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

X. Chen, C. Kim, G. Li, and B. Zhou, “Numerical study of lumped dispersion compensation for 40-Gb/s returnto-zero differential phase-shift keying transmission,” IEEE Photon. Technol. Lett. 19(8), 568–570 (2007).
[CrossRef]

J. Lightwave Technol. (7)

Opt. Express (5)

Other (2)

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver," Opt. Express 15, 2120-2126 (2007)
[CrossRef] [PubMed]

J. G. Proakis, Digital Communications, 4th ed. (McGraw Hill, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Finite Impulse Response (FIR) filter for digital dispersion compensation.

Fig. 2.
Fig. 2.

Simulation setup with digital dispersion compensation. PSF: Pulse shaping filter. PE: Phase estimation.

Fig. 3.
Fig. 3.

Performance of the carrier phase recovery algorithm for different modulation formats.

Fig. 4.
Fig. 4.

Penalty at a BER of 10−3 with digital filtering for (a) QPSK, (b) 16-QAM, and (c) 64-QAM for different transmission speeds. The linewidth per laser was fixed to 5 MHz, 1 MHz, and 100 kHz for QPSK, 16-QAM, and 64-QAM, respectively.

Fig. 5.
Fig. 5.

Maximum tolerable LO linewidth for different modulation formats assuming a penalty of 1 dB.

Tables (1)

Tables Icon

Table 1. Penalty with digital filtering for a transmission distance of 2000 km at 56 Gbaud for the different modulation formats

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H f ( ω ) = exp ( j D λ 2 4 π c ω 2 z ) ,
a k = j c T 2 4 D λ 2 z exp ( j π c T 2 4 D λ 2 z k 2 ) ,
N taps = 2 × 2 D λ 2 z c T 2 + 1 ,
ϕ ̂ = arg [ Σ k = 1 N r k · t k * ] ,

Metrics