Abstract

We theoretically investigate the generation of quantum-correlated photon pairs through spontaneous four-wave mixing in chalcogenide As2S3 waveguides. For reasonable pump power levels, we show that such photonic-chip-based photon-pair sources can exhibit high brightness (≈1 × 109 pairs/s) and high correlation (≈100) if the waveguide length is chosen properly or the waveguide dispersion is engineered. Such a high correlation is possible in the presence of Raman scattering because the Raman profile exhibits a low gain window at a Stokes shift of 7.4 THz, though it is constrained due to multi-pair generation. As the proposed scheme is based on photonic chip technologies, it has the potential to become an integrated platform for the implementation of on-chip quantum technologies.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
    [CrossRef] [PubMed]
  2. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
    [CrossRef] [PubMed]
  3. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
    [CrossRef]
  4. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56(1), 58–60 (1986).
    [CrossRef] [PubMed]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [CrossRef] [PubMed]
  6. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
    [CrossRef]
  7. X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
    [CrossRef] [PubMed]
  8. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005).
    [CrossRef] [PubMed]
  9. A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156–6165 (2009).
    [CrossRef] [PubMed]
  10. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17(6), 4670–4676 (2009).
    [CrossRef] [PubMed]
  11. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
    [CrossRef] [PubMed]
  12. O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett. 30(12), 1539–1541 (2005).
    [CrossRef] [PubMed]
  13. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
    [CrossRef] [PubMed]
  14. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
    [CrossRef]
  15. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
    [CrossRef] [PubMed]
  16. H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
    [CrossRef]
  17. R. J. Kobliska and S. A. Solin, “Temperature Dependence of the Raman Spectrum and the Depolarization Spectrum of Amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
    [CrossRef]
  18. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As(2)S(3) fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
    [CrossRef] [PubMed]
  19. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
    [CrossRef] [PubMed]
  20. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
    [CrossRef] [PubMed]
  21. Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backwards Heisenberg picture approach,” Phys. Rev. A 77(3), 033808 (2008).
    [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, Elsevier, 2007), chap. 2, 8 & 10.
  23. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31(9), 1286–1288 (2006).
    [CrossRef] [PubMed]
  24. Q. Lin, F. Yaman, and G. P. Agrawa, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
    [CrossRef]
  25. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009).
    [CrossRef]
  26. Private communication with Prof, Barry Luther-Davies at the Australian National University.
  27. Q. Lin and G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett. 31(21), 3140–3142 (2006).
    [CrossRef] [PubMed]
  28. A. Rai, S. Das, and G. S. Agarwal, “Quantum entanglement in coupled lossy waveguides,” Opt. Express 18(6), 6241–6254 (2010).
    [CrossRef] [PubMed]
  29. L. G. Helt and J. E. Sipe, Quantum States of Generated Photons in Strongly Confined Lossy Waveguides (in preparation).
  30. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
    [CrossRef] [PubMed]
  31. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As(2)S(3) waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007).
    [CrossRef] [PubMed]
  32. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92(12), 127903 (2004).
    [CrossRef] [PubMed]

2010 (2)

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

A. Rai, S. Das, and G. S. Agarwal, “Quantum entanglement in coupled lossy waveguides,” Opt. Express 18(6), 6241–6254 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (5)

2007 (5)

M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As(2)S(3) waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007).
[CrossRef] [PubMed]

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[CrossRef] [PubMed]

Q. Lin, F. Yaman, and G. P. Agrawa, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

2004 (3)

X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[CrossRef] [PubMed]

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92(12), 127903 (2004).
[CrossRef] [PubMed]

1997 (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

1986 (1)

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56(1), 58–60 (1986).
[CrossRef] [PubMed]

1973 (1)

R. J. Kobliska and S. A. Solin, “Temperature Dependence of the Raman Spectrum and the Depolarization Spectrum of Amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
[CrossRef]

Agarwal, G. S.

Aggarwal, I. D.

Agrawa, G. P.

Q. Lin, F. Yaman, and G. P. Agrawa, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Agrawal, G. P.

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett. 30(12), 1539–1541 (2005).
[CrossRef] [PubMed]

Baek, B.

Baker, N. J.

Baldi, P.

Banaszek, K.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[CrossRef] [PubMed]

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

Brainis, E.

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009).
[CrossRef]

Cemlyn, B.

Chen, J.

Choi, D. Y.

Clark, A.

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Daniell, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

Das, S.

de Sterke, C. M.

Dekker, S.

Duligall, J.

Dyer, S. D.

Eberly, J. H.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92(12), 127903 (2004).
[CrossRef] [PubMed]

Eggleton, B. J.

Eibl,, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

Finsterbusch, K.

Foster, M. A.

Fu, L.

Fukuda, H.

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Fulconis, J.

Gaeta, A. L.

Gai, X.

Halder, M.

Harada, K.

Helt, L. G.

L. G. Helt and J. E. Sipe, Quantum States of Generated Photons in Strongly Confined Lossy Waveguides (in preparation).

Hong, C. K.

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56(1), 58–60 (1986).
[CrossRef] [PubMed]

Itabashi, S.

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

Ken-ichi, H.

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

Kobliska, R. J.

R. J. Kobliska and S. A. Solin, “Temperature Dependence of the Raman Spectrum and the Depolarization Spectrum of Amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
[CrossRef]

Kumar, P.

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Lamont, M. R.

Lamont, M. R. E.

Law, C. K.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92(12), 127903 (2004).
[CrossRef] [PubMed]

Lee, K. F.

Li, X.

Lin, Q.

Lipson, M.

Liscidini, M.

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backwards Heisenberg picture approach,” Phys. Rev. A 77(3), 033808 (2008).
[CrossRef]

Luan, F.

Luther-Davies, B.

Madden, S.

Magi, E.

Mandel, L.

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56(1), 58–60 (1986).
[CrossRef] [PubMed]

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

McMillan, A. R.

Moss, D. J.

Nam, S. W.

Nguyen, H. C.

O’Brien, J. L.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

Ostrowsky, D. B.

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

Politi, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Rai, A.

Rarity, J. G.

Russell, P. St. J.

Sanghera, J. S.

Schmidt, B. S.

Sei-ichi, I.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Sharping, J. E.

Shaw, L. B.

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Silberhorn, C.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[CrossRef] [PubMed]

Sipe, J. E.

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backwards Heisenberg picture approach,” Phys. Rev. A 77(3), 033808 (2008).
[CrossRef]

L. G. Helt and J. E. Sipe, Quantum States of Generated Photons in Strongly Confined Lossy Waveguides (in preparation).

Solin, S. A.

R. J. Kobliska and S. A. Solin, “Temperature Dependence of the Raman Spectrum and the Depolarization Spectrum of Amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
[CrossRef]

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

Stevens, M. J.

Ta’eed, V. G.

Takesue, H.

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Tanzilli, S.

Tokura, Y.

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Tsuchizawa, T.

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Tuniz, A.

Turner, A. C.

U’Ren, A. B.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[CrossRef] [PubMed]

Voss, P.

Wadsworth, W. J.

Walmsley, I. A.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[CrossRef] [PubMed]

Watanabe, T.

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Weinfurter, H.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Xiong, C.

Yamada, K.

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawa, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31(9), 1286–1288 (2006).
[CrossRef] [PubMed]

Yang, Z.

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backwards Heisenberg picture approach,” Phys. Rev. A 77(3), 033808 (2008).
[CrossRef]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Zeilinger, A.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and I. Sei-ichi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91(20), 201108 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ken-ichi, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010).
[CrossRef]

Nat. Photonics (1)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

Nature (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental Quantum Teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

Opt. Express (11)

X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005).
[CrossRef] [PubMed]

A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17(8), 6156–6165 (2009).
[CrossRef] [PubMed]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17(6), 4670–4676 (2009).
[CrossRef] [PubMed]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

A. Rai, S. Das, and G. S. Agarwal, “Quantum entanglement in coupled lossy waveguides,” Opt. Express 18(6), 6241–6254 (2010).
[CrossRef] [PubMed]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
[CrossRef] [PubMed]

M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As(2)S(3) waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (3)

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backwards Heisenberg picture approach,” Phys. Rev. A 77(3), 033808 (2008).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawa, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009).
[CrossRef]

Phys. Rev. B (1)

R. J. Kobliska and S. A. Solin, “Temperature Dependence of the Raman Spectrum and the Depolarization Spectrum of Amorphous As2S3,” Phys. Rev. B 8(2), 756–768 (1973).
[CrossRef]

Phys. Rev. Lett. (5)

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92(12), 127903 (2004).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[CrossRef] [PubMed]

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56(1), 58–60 (1986).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

Quantum States of Generated Photons in Strongly Confined Lossy Waveguides (1)

L. G. Helt and J. E. Sipe, Quantum States of Generated Photons in Strongly Confined Lossy Waveguides (in preparation).

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, Elsevier, 2007), chap. 2, 8 & 10.

Private communication with Prof, Barry Luther-Davies at the Australian National University.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Concept of SFWM from a single pump wave within a nonlinear waveguide.

Fig. 2
Fig. 2

Raman gain profile for silica (broken line) and As2S3 (solid line). The inset shows the details of the low-Raman-gain window of chalcogenide.

Fig. 3
Fig. 3

(a) Photon generation rates by SFWM (blue) and SpRS (red) in a 2 cm-long waveguide. The green area shows the flat top of the SFWM photon pair generation band. (b) Pair generation rate and correlation at pump-idle frequency detuning where phase matching is perfect.

Fig. 4
Fig. 4

Photon generation rates by SFWM (blue) and SpRS (red) in a (a) 14 cm and (b) 1 cm-long waveguide.

Fig. 5
Fig. 5

The dispersion profiles of the TM0 mode of waveguides with a height of 850 and 920 nm. The inset is the schematic cross-section of a chalcogenide waveguide.

Fig. 6
Fig. 6

Photon generation rates by SFWM (blue) and SpRS (red) in a 2 cm-long waveguide when D = 13.5 ps/nm/km.

Fig. 7
Fig. 7

The pair correlation ratio ρ Raman/ρ no Raman, for the 2 cm-long waveguides with different dispersion profiles. Green for D = 13.5 ps/nm/km and red for D = 27 ps/nm/km.

Fig. 8
Fig. 8

Biphoton probability density. ν t = ν 1 + ν 2 and ν r = (ν 1ν 2)/2.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f SFWM ( L , ν ) = ( γ P 0 L ) 2 sinc 2 [ β 2 ( 2 π ν ) 2 2 L + γ P 0 L ] .
S SFWM ( ν ) = ν Δ ν 2 ν + Δ ν 2 f SFWM ( L , ν ) d ν Δ ν f SFWM ( L , ν ) .
f SpRS ( L , ν ) = P 0 L | g R ( ν ) | ( n th + 1 ) ,
g R ( ν ) = 2 γ f R Im [ h R ( ν ) ] .
n th = 1 exp ( h ν / k B T ) 1 ,
S SpRS ( ν ) = ν Δ ν 2 ν + Δ ν 2 f SpRS ( L , ν ) d ν Δ ν f SpRS ( L , ν ) .
F = S SFWM S SpRS = γ P 0 L 2 f R | Im [ h R ( ν ) ] | sinc 2 [ β 2 ( 2 π ν ) 2 L / 2 + γ P 0 L ] n th + 1 .
ρ Raman = [ γ Re ( η ) ] 2 + | g R ( n th + 1 / 2 ) | 2 [ | γ η | 2 P 0 L + | g R ( n th + 1 ) | ] [ | γ η | 2 P 0 L + | g R | n th ] ,
ρ no Raman = 1 / ( γ P 0 L ) 2 .
| ψ = | vac + ξ 2 φ ( ν 1 , ν 2 ) a ν 1 a ν 2 | vac + ,

Metrics