Abstract

We demonstrate high power generation of visible red and near IR light by four wave mixing in photonic crystal fibres (PCFs) pumped at 1064 nm with picosecond pulses (30 – 80 ps). 30% conversion efficiency is demonstrated in a single pass using fibre lengths less than 1 m, with signal wavelengths from 650 nm to 820 nm selectable by choice of PCF. An all fibre integrated system delivers 2.16 W at 740 nm with a pulse repetition frequency of 20 MHz. We discuss the overall parameter space for this type of wavelength conversion in PCF with different fibre designs suitable for delivering a particular wavelength at low or high power.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
    [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-1-25 .
    [CrossRef]
  3. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-2-299 .
    [CrossRef] [PubMed]
  4. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2670 .
    [CrossRef] [PubMed]
  5. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol. 26(14), 2184–2191 (2008), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-26-14-2184 .
    [CrossRef]
  6. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15(6), 2947–2952 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-2947 .
    [CrossRef] [PubMed]
  7. Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator,” J. Opt. Soc. Am. B 26(7), 1351–1356 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=josab-26-7-1351 .
    [CrossRef]
  8. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-Wave Band Translation Between the Near-Infrared and Visible Spectral Ranges,” J. Lightwave Technol. 25(1), 58–66 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-1-58 .
    [CrossRef]
  9. Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Widely tunable photonic crystal fiber Fabry-Perot optical parametric oscillator,” Opt. Lett. 33(12), 1351–1353 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-12-1351 .
    [CrossRef] [PubMed]
  10. T. Sloanes, K. McEwan, B. Lowans, and L. Michaille, “Optimisation of high average power optical parametric generation using a photonic crystal fiber,” Opt. Express 16(24), 19724–19733 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19724 .
    [CrossRef] [PubMed]
  11. Europoan project Neuropt, www.neuropt.eu .
  12. P. Blandin, S. Lévêque-Fort, S. Lécart, J. C. Cossec, M. C. Potier, Z. Lenkei, F. Druon, and P. Georges, “Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source,” Appl. Opt. 48(3), 553–559 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-3-553 .
    [CrossRef] [PubMed]
  13. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-14-10178 .
    [CrossRef] [PubMed]
  14. S. Schlachter, A. Elder, J. H. Frank, A. Grudinin, and C. F. Kaminski, “Spectrally Resolved Confocal Fluorescence Microscopy with a Supercontinuum Laser,” Microscopy and Analysis 22, 11–13 (2008), http://www.microscopy-analysis.com/magazine-article/spectrally-resolved-confocal-fluorescence-microscopy-supercontinuum-laser?c= .
  15. L. Lavoute, W. J. Wadsworth, and J. C. Knight, “Efficient four wave mixing from a picosecond fibre laser in photonic crystal fibre,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ5–4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CJ5_4 .
  16. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high power generation of pulsed red light via four-wave-mixing in a large-mode-area, endlessly single-mode photonic-crystal fiber,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ5–5, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CJ5_5 .
  17. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-22-3499 .
    [CrossRef] [PubMed]
  18. G. P. Agrawal, Nonlear Fiber Optics, 3rd ed., (Academic Press, 2001).
  19. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-8-2269 .
    [CrossRef]
  20. J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers,” Opt. Express 14(20), 9491–9501 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9491 .
    [CrossRef] [PubMed]
  21. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-13-961 .
    [CrossRef] [PubMed]
  22. C. Xiong, Z. Chen, and W. J. Wadsworth, “Dual-wavelength-pumped supercontinuum generation in an all-Fiber device,” J. Lightwave Technol. 27(11), 1638–1643 (2009), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-27-11-1638 .
    [CrossRef]
  23. Fianium, http://www.fianium.com .
  24. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [CrossRef]

2009

2008

2007

2006

2004

2000

1999

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

1998

1997

1996

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Alic, N.

Biancalana, F.

Birks, T.

Birks, T. A.

Blandin, P.

Chen, J. S. Y.

Chen, Z.

Cossec, J. C.

Druon, F.

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Fainman, Y.

Ford, J. E.

Georges, P.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Harvey, J. D.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Hult, J.

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Jauregui, C.

Jiang, R.

Joly, N.

Jones, R. L.

Kaminski, C. F.

Karlsson, M.

Knight, J.

Knight, J. C.

Langridge, J. M.

Laurila, T.

Lécart, S.

Lenkei, Z.

Leonhardt, R.

Lévêque-Fort, S.

Limpert, J.

Lowans, B.

Marie, V.

McEwan, K.

McKinstrie, C. J.

Michaille, L.

Murdoch, S. G.

Nezhad, M.

Nodop, D.

Potier, M. C.

Radic, S.

Ranka, J. K.

Russell, P.

Russell, P. St. J.

Saperstein, R. E.

Schimpf, D.

Sharping, J. E.

Sloanes, T.

Stentz, A. J.

Stone, J. M.

Tünnermann, A.

Wadsworth, W.

Wadsworth, W. J.

Watt, R. S.

Windeler, R. S.

Wong, G. K. L.

Xiong, C.

Xu, Y. Q.

Appl. Opt.

J. Lightwave Technol.

J. Non-Cryst. Solids

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers,” Opt. Express 14(20), 9491–9501 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9491 .
[CrossRef] [PubMed]

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15(6), 2947–2952 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-2947 .
[CrossRef] [PubMed]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-2-299 .
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2670 .
[CrossRef] [PubMed]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-14-10178 .
[CrossRef] [PubMed]

T. Sloanes, K. McEwan, B. Lowans, and L. Michaille, “Optimisation of high average power optical parametric generation using a photonic crystal fiber,” Opt. Express 16(24), 19724–19733 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19724 .
[CrossRef] [PubMed]

Opt. Lett.

Science

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlear Fiber Optics, 3rd ed., (Academic Press, 2001).

Europoan project Neuropt, www.neuropt.eu .

S. Schlachter, A. Elder, J. H. Frank, A. Grudinin, and C. F. Kaminski, “Spectrally Resolved Confocal Fluorescence Microscopy with a Supercontinuum Laser,” Microscopy and Analysis 22, 11–13 (2008), http://www.microscopy-analysis.com/magazine-article/spectrally-resolved-confocal-fluorescence-microscopy-supercontinuum-laser?c= .

L. Lavoute, W. J. Wadsworth, and J. C. Knight, “Efficient four wave mixing from a picosecond fibre laser in photonic crystal fibre,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ5–4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CJ5_4 .

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high power generation of pulsed red light via four-wave-mixing in a large-mode-area, endlessly single-mode photonic-crystal fiber,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ5–5, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CJ5_5 .

Fianium, http://www.fianium.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Phasematching diagram computed for the specific fibre PCF-A (Λ = 3 μm and d/Λ = 0.3) when the pump wavelength is varied from 950 to 1200 nm and for a pump peak power of 10 kW and 50 kW.

Fig. 2
Fig. 2

Evolution of - signal wavelengths (colour plot and black contours) in nm, - walk off length (white lines) between the pump and the idler in m, for τ = 30 ps, when λp = 1064 nm, Ppeak = 50kW and for a wide range of PCFs with pitch [2.5-7] μm and d/Λ [0.2-0.4]. The specific area where λZD = λp = 1064 nm is shown with the thick green line.

Fig. 3
Fig. 3

Schematic of the experimental set up.

Fig. 4
Fig. 4

(a) Evolution of P1 (open symbols, FWM signal only) and P2 (filled symbols, FWM and associated Raman) versus Pout , for a 2 m long fibre (rectangles) and a 1 m long fibre (circles). (b) Signal band spectrum for different pump powers, Pin , (fibre length 2 m).

Fig. 5
Fig. 5

Spectrum measured at the output of the 1 m long piece of PCF-A at a signal power of 298 mW.

Fig. 6
Fig. 6

Optical spectra measured at the output of PCF-B (black line) and PCF-C (red line) (Pin ~2.5 W).

Fig. 7
Fig. 7

Lower part of the parametric diagram of the PCF-A and tuning range of the signal wavelength achievable when the pump is tuned from 1020 to 1080 nm and for Ppeak = 10 kW and 50 kW.

Tables (1)

Tables Icon

Table 1 Characteristics of PCF-B and PCF-C: Λ and d/Λ, measured from SEM pictures; theoretical (Theo.) and experimental (Exp.) signal wavelengths, idler wavelength (calculated from the experimental signal wavelength) and the powers P signal and P total, power density and conversion efficiency measured when the PCFs are pumped at 1064 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L w . o a b = τ 1 v g a 1 v g b

Metrics