Abstract

We demonstrate high power generation of visible red and near IR light by four wave mixing in photonic crystal fibres (PCFs) pumped at 1064 nm with picosecond pulses (30 – 80 ps). 30% conversion efficiency is demonstrated in a single pass using fibre lengths less than 1 m, with signal wavelengths from 650 nm to 820 nm selectable by choice of PCF. An all fibre integrated system delivers 2.16 W at 740 nm with a pulse repetition frequency of 20 MHz. We discuss the overall parameter space for this type of wavelength conversion in PCF with different fibre designs suitable for delivering a particular wavelength at low or high power.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
    [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-25-1-25 .
    [CrossRef]
  3. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-2-299 .
    [CrossRef] [PubMed]
  4. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2670 .
    [CrossRef] [PubMed]
  5. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol. 26(14), 2184–2191 (2008), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-26-14-2184 .
    [CrossRef]
  6. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15(6), 2947–2952 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-2947 .
    [CrossRef] [PubMed]
  7. Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator,” J. Opt. Soc. Am. B 26(7), 1351–1356 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=josab-26-7-1351 .
    [CrossRef]
  8. R. Jiang, R. E. Saperstein, N. Alic, M. Nezhad, C. J. McKinstrie, J. E. Ford, Y. Fainman, and S. Radic, “Continuous-Wave Band Translation Between the Near-Infrared and Visible Spectral Ranges,” J. Lightwave Technol. 25(1), 58–66 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-1-58 .
    [CrossRef]
  9. Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Widely tunable photonic crystal fiber Fabry-Perot optical parametric oscillator,” Opt. Lett. 33(12), 1351–1353 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-12-1351 .
    [CrossRef] [PubMed]
  10. T. Sloanes, K. McEwan, B. Lowans, and L. Michaille, “Optimisation of high average power optical parametric generation using a photonic crystal fiber,” Opt. Express 16(24), 19724–19733 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19724 .
    [CrossRef] [PubMed]
  11. Europoan project Neuropt, www.neuropt.eu .
  12. P. Blandin, S. Lévêque-Fort, S. Lécart, J. C. Cossec, M. C. Potier, Z. Lenkei, F. Druon, and P. Georges, “Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source,” Appl. Opt. 48(3), 553–559 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-3-553 .
    [CrossRef] [PubMed]
  13. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-14-10178 .
    [CrossRef] [PubMed]
  14. S. Schlachter, A. Elder, J. H. Frank, A. Grudinin, and C. F. Kaminski, “Spectrally Resolved Confocal Fluorescence Microscopy with a Supercontinuum Laser,” Microscopy and Analysis 22, 11–13 (2008), http://www.microscopy-analysis.com/magazine-article/spectrally-resolved-confocal-fluorescence-microscopy-supercontinuum-laser?c= .
  15. L. Lavoute, W. J. Wadsworth, and J. C. Knight, “Efficient four wave mixing from a picosecond fibre laser in photonic crystal fibre,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ5–4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CJ5_4 .
  16. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high power generation of pulsed red light via four-wave-mixing in a large-mode-area, endlessly single-mode photonic-crystal fiber,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ5–5, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CJ5_5 .
  17. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-22-3499 .
    [CrossRef] [PubMed]
  18. G. P. Agrawal, Nonlear Fiber Optics, 3rd ed., (Academic Press, 2001).
  19. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-8-2269 .
    [CrossRef]
  20. J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers,” Opt. Express 14(20), 9491–9501 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9491 .
    [CrossRef] [PubMed]
  21. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-13-961 .
    [CrossRef] [PubMed]
  22. C. Xiong, Z. Chen, and W. J. Wadsworth, “Dual-wavelength-pumped supercontinuum generation in an all-Fiber device,” J. Lightwave Technol. 27(11), 1638–1643 (2009), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-27-11-1638 .
    [CrossRef]
  23. Fianium, http://www.fianium.com .
  24. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [CrossRef]

2009 (4)

2008 (5)

2007 (2)

2006 (1)

2004 (1)

2000 (1)

1999 (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Alic, N.

Biancalana, F.

Birks, T.

Birks, T. A.

Blandin, P.

Chen, J. S. Y.

Chen, Z.

Cossec, J. C.

Druon, F.

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Fainman, Y.

Ford, J. E.

Georges, P.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Harvey, J. D.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Hult, J.

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

Jauregui, C.

Jiang, R.

Joly, N.

Jones, R. L.

Kaminski, C. F.

Karlsson, M.

Knight, J.

Knight, J. C.

Langridge, J. M.

Laurila, T.

Lécart, S.

Lenkei, Z.

Leonhardt, R.

Lévêque-Fort, S.

Limpert, J.

Lowans, B.

Marie, V.

McEwan, K.

McKinstrie, C. J.

Michaille, L.

Murdoch, S. G.

Nezhad, M.

Nodop, D.

Potier, M. C.

Radic, S.

Ranka, J. K.

Russell, P.

Russell, P. St. J.

Saperstein, R. E.

Schimpf, D.

Sharping, J. E.

Sloanes, T.

Stentz, A. J.

Stone, J. M.

Tünnermann, A.

Wadsworth, W.

Wadsworth, W. J.

Watt, R. S.

Windeler, R. S.

Wong, G. K. L.

Xiong, C.

Xu, Y. Q.

Appl. Opt. (1)

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (6)

T. Sloanes, K. McEwan, B. Lowans, and L. Michaille, “Optimisation of high average power optical parametric generation using a photonic crystal fiber,” Opt. Express 16(24), 19724–19733 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19724 .
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2670 .
[CrossRef] [PubMed]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-2-299 .
[CrossRef] [PubMed]

J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers,” Opt. Express 14(20), 9491–9501 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9491 .
[CrossRef] [PubMed]

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15(6), 2947–2952 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-2947 .
[CrossRef] [PubMed]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-14-10178 .
[CrossRef] [PubMed]

Opt. Lett. (4)

Science (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Other (6)

S. Schlachter, A. Elder, J. H. Frank, A. Grudinin, and C. F. Kaminski, “Spectrally Resolved Confocal Fluorescence Microscopy with a Supercontinuum Laser,” Microscopy and Analysis 22, 11–13 (2008), http://www.microscopy-analysis.com/magazine-article/spectrally-resolved-confocal-fluorescence-microscopy-supercontinuum-laser?c= .

L. Lavoute, W. J. Wadsworth, and J. C. Knight, “Efficient four wave mixing from a picosecond fibre laser in photonic crystal fibre,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ5–4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CJ5_4 .

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high power generation of pulsed red light via four-wave-mixing in a large-mode-area, endlessly single-mode photonic-crystal fiber,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ5–5, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CJ5_5 .

Europoan project Neuropt, www.neuropt.eu .

G. P. Agrawal, Nonlear Fiber Optics, 3rd ed., (Academic Press, 2001).

Fianium, http://www.fianium.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Phasematching diagram computed for the specific fibre PCF-A (Λ = 3 μm and d/Λ = 0.3) when the pump wavelength is varied from 950 to 1200 nm and for a pump peak power of 10 kW and 50 kW.

Fig. 2
Fig. 2

Evolution of - signal wavelengths (colour plot and black contours) in nm, - walk off length (white lines) between the pump and the idler in m, for τ = 30 ps, when λp = 1064 nm, Ppeak = 50kW and for a wide range of PCFs with pitch [2.5-7] μm and d/Λ [0.2-0.4]. The specific area where λZD = λp = 1064 nm is shown with the thick green line.

Fig. 3
Fig. 3

Schematic of the experimental set up.

Fig. 4
Fig. 4

(a) Evolution of P1 (open symbols, FWM signal only) and P2 (filled symbols, FWM and associated Raman) versus Pout , for a 2 m long fibre (rectangles) and a 1 m long fibre (circles). (b) Signal band spectrum for different pump powers, Pin , (fibre length 2 m).

Fig. 5
Fig. 5

Spectrum measured at the output of the 1 m long piece of PCF-A at a signal power of 298 mW.

Fig. 6
Fig. 6

Optical spectra measured at the output of PCF-B (black line) and PCF-C (red line) (Pin ~2.5 W).

Fig. 7
Fig. 7

Lower part of the parametric diagram of the PCF-A and tuning range of the signal wavelength achievable when the pump is tuned from 1020 to 1080 nm and for Ppeak = 10 kW and 50 kW.

Tables (1)

Tables Icon

Table 1 Characteristics of PCF-B and PCF-C: Λ and d/Λ, measured from SEM pictures; theoretical (Theo.) and experimental (Exp.) signal wavelengths, idler wavelength (calculated from the experimental signal wavelength) and the powers P signal and P total, power density and conversion efficiency measured when the PCFs are pumped at 1064 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L w . o a b = τ 1 v g a 1 v g b

Metrics