Abstract

Two integrated devices based on the vertical coupling between a photonic crystal microcavity and a silicon (Si) ridge waveguide are presented in this paper. When the resonator is coupled to a single waveguide, light can be spectrally extracted from the waveguide to free space through the far field emission of the resonator. When the resonator is vertically coupled to two waveguides, a vertical add-drop filter can be realized. The dropping efficiency of these devices relies on a careful design of the resonator. In this paper, we use a Fabry-Perot (FP) microcavity composed of two photonic crystal (PhC) slab mirrors. Thanks to the unique dispersion properties of slow Bloch modes (SBM) at the flat extreme of the dispersion curve, it is possible to design a FP cavity exhibiting two quasi-degenerate modes. This specific configuration allows for a coupling efficiency that can theoretically achieve 100%. Using 3D FDTD calculations, we discuss the design of such devices and show that high dropping efficiency can be achieved between the Si waveguides and the PhC microcavity.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Boutami, B. Ben Bakir, X. Letartre, J.-L. Leclercq, and P. Viktorovitch, “Photonic crystal slab mirrors for an ultimate vertical and lateral confinement of light in vertical Fabry Perot cavities,” Proc. SPIE 6989, 69890V (2008).
    [CrossRef]
  2. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-12443 .
    [CrossRef] [PubMed]
  3. C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
    [CrossRef]
  4. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?&id=79588 .
    [CrossRef] [PubMed]
  5. Z. Zhang and M. Qiu, “Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs,” Opt. Express 13(7), 2596–2604 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2596 .
    [CrossRef] [PubMed]
  6. C. Seassal, Y. Desieres, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, “Optical coupling between a two-dimensional photonic crystal based microcavity and single-line defect waveguide on InP membranes,” IEEE J. Quantum Electron. 38(7), 811–815 (2002).
    [CrossRef]
  7. H. Takano, B. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
    [CrossRef]
  8. H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226 (2004).
    [CrossRef]
  9. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?id=125713 .
    [CrossRef] [PubMed]
  10. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29(7), 697–699 (2004).
    [CrossRef] [PubMed]
  11. M. Qiu, “Vertically coupled photonic crystal optical filters,” Opt. Lett. 30(12), 1476–1478 (2005).
    [CrossRef] [PubMed]
  12. Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009).
    [CrossRef]
  13. K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
    [CrossRef]
  14. P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, “Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs,” Opt. Express 14(9), 3864–3871 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-9-3864 .
    [CrossRef] [PubMed]
  15. S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14(8), 3129–3137 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3129 .
    [CrossRef] [PubMed]
  16. C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
    [CrossRef]
  17. S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3(1), 4–11 (1998).
    [CrossRef] [PubMed]
  18. http://alioth.debian.org/projects/tessa/
  19. http://ab-initio.mit.edu/wiki/index.php/Harminv
  20. E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13(8), 3037–3048 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-3037 .
    [CrossRef] [PubMed]
  21. L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo-Romeo, P. Viktorovitch, P. Gilet, B. B. Bakir, P. Grosse, J. M. Fedeli, and A. Chelnokov, “Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers,” Proceedings of SPIE, Photonics Europe, Proc. SPIE, Vol. 6989, 69890W, Photonic Crystal Materials and Devices VIII (2008).
  22. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16(5), 3136–3145 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3136 .
    [CrossRef] [PubMed]

2009 (1)

Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009).
[CrossRef]

2008 (3)

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[CrossRef]

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16(5), 3136–3145 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3136 .
[CrossRef] [PubMed]

S. Boutami, B. Ben Bakir, X. Letartre, J.-L. Leclercq, and P. Viktorovitch, “Photonic crystal slab mirrors for an ultimate vertical and lateral confinement of light in vertical Fabry Perot cavities,” Proc. SPIE 6989, 69890V (2008).
[CrossRef]

2007 (2)

2006 (2)

2005 (4)

2004 (3)

2002 (1)

C. Seassal, Y. Desieres, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, “Optical coupling between a two-dimensional photonic crystal based microcavity and single-line defect waveguide on InP membranes,” IEEE J. Quantum Electron. 38(7), 811–815 (2002).
[CrossRef]

2001 (1)

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

1999 (1)

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

1998 (1)

Aers, G.

Akahane, Y.

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226 (2004).
[CrossRef]

Asano, T.

H. Takano, B. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226 (2004).
[CrossRef]

Baba, T.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[CrossRef]

Baets, R.

Barclay, P. E.

Ben Bakir, B.

Benbakir, B.

Benisty, H.

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

Benyattou, T.

C. Seassal, Y. Desieres, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, “Optical coupling between a two-dimensional photonic crystal based microcavity and single-line defect waveguide on InP membranes,” IEEE J. Quantum Electron. 38(7), 811–815 (2002).
[CrossRef]

Borselli, M.

Boutami, S.

Dalacu, D.

De La Rue, R.

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

Desieres, Y.

C. Seassal, Y. Desieres, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, “Optical coupling between a two-dimensional photonic crystal based microcavity and single-line defect waveguide on InP membranes,” IEEE J. Quantum Electron. 38(7), 811–815 (2002).
[CrossRef]

Di Cioccio, L.

Drouard, E.

Eggleton, B. J.

Fan, S.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3(1), 4–11 (1998).
[CrossRef] [PubMed]

Fedeli, J. M.

Ferrier, L.

Frédérick, S.

Garrigues, M.

Grillet, C.

Halioua, Y.

Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009).
[CrossRef]

Hattori, H.

Haus, H.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3(1), 4–11 (1998).
[CrossRef] [PubMed]

Hollinger, G.

Houdré, R.

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

Joannopoulos, J.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3(1), 4–11 (1998).
[CrossRef] [PubMed]

Karle, T. J.

Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009).
[CrossRef]

Kazmierczak, A.

Khan, M.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Krauss, T.

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

Kuramochi, E.

Lapointe, J.

Leclercq, J. L.

Leclercq, J.-L.

Legratiet, L.

Letartre, X.

S. Boutami, B. Ben Bakir, X. Letartre, J.-L. Leclercq, and P. Viktorovitch, “Photonic crystal slab mirrors for an ultimate vertical and lateral confinement of light in vertical Fabry Perot cavities,” Proc. SPIE 6989, 69890V (2008).
[CrossRef]

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-12443 .
[CrossRef] [PubMed]

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14(8), 3129–3137 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3129 .
[CrossRef] [PubMed]

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, “Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs,” Opt. Express 14(9), 3864–3871 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-9-3864 .
[CrossRef] [PubMed]

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13(8), 3037–3048 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-3037 .
[CrossRef] [PubMed]

C. Seassal, Y. Desieres, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, “Optical coupling between a two-dimensional photonic crystal based microcavity and single-line defect waveguide on InP membranes,” IEEE J. Quantum Electron. 38(7), 811–815 (2002).
[CrossRef]

Letatre, X.

Manolatou, C.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Mitsugi, S.

Monat, C.

Monnier, P.

Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009).
[CrossRef]

Moss, D. J.

Noda, S.

H. Takano, B. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226 (2004).
[CrossRef]

Notomi, M.

Nozaki, K.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[CrossRef]

Oesterle, U.

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

Olivier, S.

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

Painter, O.

Poole, P. J.

Qiu, M.

Raineri, F.

Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009).
[CrossRef]

Raj, R.

Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009).
[CrossRef]

Rattier, M.

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

Regreny, P.

Roelkens, G.

Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009).
[CrossRef]

Rojo Romeo, P.

Rojo-Romeo, P.

Ryu, H.

Sagnes, I.

Seassal, C.

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, “Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs,” Opt. Express 14(9), 3864–3871 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-9-3864 .
[CrossRef] [PubMed]

C. Seassal, Y. Desieres, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, “Optical coupling between a two-dimensional photonic crystal based microcavity and single-line defect waveguide on InP membranes,” IEEE J. Quantum Electron. 38(7), 811–815 (2002).
[CrossRef]

Shinya, A.

Smith, C.

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

Smith, C. L.

Song, B.

H. Takano, B. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[CrossRef]

Srinivasan, K.

Strassner, M.

Takano, H.

H. Takano, B. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226 (2004).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Viktorovitch, P.

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16(5), 3136–3145 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3136 .
[CrossRef] [PubMed]

S. Boutami, B. Ben Bakir, X. Letartre, J.-L. Leclercq, and P. Viktorovitch, “Photonic crystal slab mirrors for an ultimate vertical and lateral confinement of light in vertical Fabry Perot cavities,” Proc. SPIE 6989, 69890V (2008).
[CrossRef]

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-12443 .
[CrossRef] [PubMed]

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14(8), 3129–3137 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3129 .
[CrossRef] [PubMed]

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13(8), 3037–3048 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-3037 .
[CrossRef] [PubMed]

C. Seassal, Y. Desieres, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, “Optical coupling between a two-dimensional photonic crystal based microcavity and single-line defect waveguide on InP membranes,” IEEE J. Quantum Electron. 38(7), 811–815 (2002).
[CrossRef]

Villeneuve, P.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3(1), 4–11 (1998).
[CrossRef] [PubMed]

Watanabe, H.

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[CrossRef]

Weisbuch, C.

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

Williams, R. L.

Zhang, Z.

Appl. Phys. Lett. (5)

H. Takano, B. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 84(13), 2226 (2004).
[CrossRef]

Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. Van Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95(20), 201119 (2009).
[CrossRef]

K. Nozaki, H. Watanabe, and T. Baba, “Photonic crystal nanolaser monolithically integrated with passive waveguide for effective light extraction,” Appl. Phys. Lett. 92(2), 021108 (2008).
[CrossRef]

C. Smith, R. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78(11), 1487 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Seassal, Y. Desieres, X. Letartre, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, and T. Benyattou, “Optical coupling between a two-dimensional photonic crystal based microcavity and single-line defect waveguide on InP membranes,” IEEE J. Quantum Electron. 38(7), 811–815 (2002).
[CrossRef]

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Opt. Express (9)

S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3(1), 4–11 (1998).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?&id=79588 .
[CrossRef] [PubMed]

Z. Zhang and M. Qiu, “Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs,” Opt. Express 13(7), 2596–2604 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2596 .
[CrossRef] [PubMed]

E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13(8), 3037–3048 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-3037 .
[CrossRef] [PubMed]

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter,” Opt. Express 14(8), 3129–3137 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3129 .
[CrossRef] [PubMed]

P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, “Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs,” Opt. Express 14(9), 3864–3871 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-9-3864 .
[CrossRef] [PubMed]

C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express 15(3), 1267–1276 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?id=125713 .
[CrossRef] [PubMed]

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-19-12443 .
[CrossRef] [PubMed]

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16(5), 3136–3145 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-5-3136 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

S. Boutami, B. Ben Bakir, X. Letartre, J.-L. Leclercq, and P. Viktorovitch, “Photonic crystal slab mirrors for an ultimate vertical and lateral confinement of light in vertical Fabry Perot cavities,” Proc. SPIE 6989, 69890V (2008).
[CrossRef]

Other (3)

http://alioth.debian.org/projects/tessa/

http://ab-initio.mit.edu/wiki/index.php/Harminv

L. Ferrier, S. Boutami, F. Mandorlo, X. Letartre, P. Rojo-Romeo, P. Viktorovitch, P. Gilet, B. B. Bakir, P. Grosse, J. M. Fedeli, and A. Chelnokov, “Vertical microcavities based on photonic crystal mirrors for III-V/Si integrated microlasers,” Proceedings of SPIE, Photonics Europe, Proc. SPIE, Vol. 6989, 69890W, Photonic Crystal Materials and Devices VIII (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Devices based on the vertical coupling between a FP microcavity and silicon waveguides: (a) Spatial and spectral light extraction to free space, (b) Vertical add-drop filter. The yellow arrows stand for the large bandwidth input “white” light, the red arrows for the extracted wavelength. (c) 2D cross section of the add drop filter. In our design, PhC slab mirrors and waveguides are in silicon and the device is entirely embedded in silica. Dc stands for the coupling distance between microcavity and waveguides, a for the lattice parameter of the PhC slab mirror (0.95µm) and the λ SiO2 gap is 1.25µm.

Fig. 2
Fig. 2

Coupling principle between a ridge waveguide and a resonator which supports two degenerate stationary modes with opposite symmetries. τ0s and τ0a are the lifetime of photons in the resonator for the symmetric and anti-symmetric modes, respectively, τcs and τca the coupling lifetime for the symmetric and anti-symmetric modes.

Fig. 3
Fig. 3

Vertical add-drop filter principle: an incoming white light source travelling in the bus waveguide can be coupled to the resonator. The light in the resonator can then either be coupled to the bus waveguide in the backward (reflection) or in the forward (transmission) direction, or coupled to the receiver waveguide in the backward (Dbackward) or in the forward (Dforward) direction.

Fig. 4
Fig. 4

Quality factors, calculated using 3D FDTD, of the two quasi degenerate modes in the PhC based microcavity when coupled to the waveguide.

Fig. 5
Fig. 5

(a) Reflected, transmitted and extracted power (1-R-T) in the waveguide as a function of the coupling distance between the microcavity and the waveguide. We calculated it using the coupled mode theory in time (see Eq. (1)) and 3D FDTD results (quality factors and frequencies of modes in the microcavity).

Fig. 6
Fig. 6

Reflected, transmitted and extracted power spectrum in the waveguide calculated using 3D FDTD, for a coupling distance of 900nm. The extracted power in the waveguide is written for each mode.

Fig. 7
Fig. 7

(a) Electric field maps (Ex) taken at two different iteration times during the FDTD simulation, for the coupling wavelength given in Fig. 6. Far field pattern of the coupled device (b) at resonance compared to the far field of the bare cavity (c).

Fig. 8
Fig. 8

Reflected and transmitted powers in the bus waveguide (R and T) and transferred powers in the backward (Dbackward) and forward (Dforward) direction in the receiver waveguide as a function of the coupling distance. Results were calculated using the coupled mode theory in time (see Eq. (3)) and 3D FDTD (quality factor and frequency of quasi-degenerate modes in the microcavity). Gray squares are the dropping efficiencies calculated using full FDTD calculations (see Fig. 9).

Fig. 9
Fig. 9

Reflected and transmitted powers in the bus waveguide (red and black respectively), backward and forward powers in the receiver waveguide (blue and green respectively) for four coupling distances (3D FDTD). The transferred power to the receiver waveguide in the forward direction is written for each coupling distance.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S 1 S + 1 r = ( 1 / τ c s j ( ω ω s ) + 1 / τ 0 s + 1 / τ c s 1 / τ c a j ( ω ω a ) + 1 / τ 0 a + 1 / τ c a ) S _ 2 S + 1 t = ( 1 1 / τ c s j ( ω ω s ) + 1 / τ 0 s + 1 / τ c s 1 / τ c a j ( ω ω a ) + 1 / τ 0 a + 1 / τ c a )
T = ( 1 τ 0 / τ c 1 + τ 0 / τ c ) 2 R = 0
r d b a c k w a r d = ( 1 / τ c s j ( ω ω s ) + 1 / τ 0 s + 2 / τ c s + 1 / τ c a j ( ω ω a ) + 1 / τ 0 a + 2 / τ c a ) t = ( 1 1 / τ c s j ( ω ω s ) + 1 / τ 0 s + 2 / τ c s 1 / τ c a j ( ω ω a ) + 1 / τ 0 a + 2 / τ c a ) d f o r w a r d = ( 1 / τ c s j ( ω ω s ) + 1 / τ 0 s + 2 / τ c s 1 / τ c a j ( ω ω a ) + 1 / τ 0 a + 2 / τ c a )
R = D b a c k w a r d = 0 T = ( 1 1 1 + τ c / 2 τ 0 ) 2 D f o r w a r d = ( 1 1 + τ c / 2 τ 0 ) 2

Metrics