Abstract

We fabricate a microfiber knot-type ring resonator with a Sagnac loop reflector, and control the light velocity using the device. In this structure, light is reflected by the Sagnac loop and passes through the ring resonator twice. Thus, it possesses doubled transmission and group delay comparing with the microfiber ring resonator without the Sagnac loop. We experimentally demonstrate pulse advancement in an under-coupled microfiber knot-type ring resonator with a Sagnac loop reflector. In the experiment, a maximum of ~25 ps pulse advancement was achieved for a 5-Gb/s RZ signal.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
    [CrossRef]
  2. E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
    [CrossRef]
  3. R. Y. Chiao and P. W. Milonni, “Fast Light, Slow Light,” Opt. Photonics News 13(6), 26–30 (2002).
    [CrossRef]
  4. K. Y. Song, M. González Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13(24), 9758–9765 (2005).
    [CrossRef] [PubMed]
  5. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
    [CrossRef] [PubMed]
  6. K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E 73, 045602(R) (2006).
    [CrossRef]
  7. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
    [CrossRef] [PubMed]
  8. D. J. Gauthier and R. W. Boyd, “Fast Light, Slow Light and Optical Precursors: What Does It All Mean?” Photon. Spectra 1, 82–90 (2007).
  9. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
    [CrossRef] [PubMed]
  10. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  11. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  12. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
    [CrossRef]
  13. L. Shi, X. Chen, L. Xing, and W. Tan, “Compact and tunable slow and fast light device based on two coupled dissimilar optical nanowires,” J. Lightwave Technol. 26(23), 3714–3720 (2008).
    [CrossRef]
  14. S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34(3), 253–255 (2009).
    [CrossRef] [PubMed]
  15. Y. Zhang, X. Zhang, E. Xu, and D. Huang, “Demonstration of reflected microfiber ring resonator,” in Proceedings of IEEE OptoElectronics and Communications Conference, 2009, Paper WM4.
  16. Y. Wang, W. Hu, Y. Su, Z. Zheng, L. Leng, X. Tian, and Y. Jin, “Performance study of 40-Gb/s RZ signals through cascaded thin-film filters with large dispersion slope,” Opt. Express 13(6), 2176–2181 (2005).
    [CrossRef] [PubMed]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (New York: Academic, 1995), Chap. 3.
  18. Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17(2), 933–940 (2009).
    [CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (2)

E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
[CrossRef]

D. J. Gauthier and R. W. Boyd, “Fast Light, Slow Light and Optical Precursors: What Does It All Mean?” Photon. Spectra 1, 82–90 (2007).

2006 (4)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E 73, 045602(R) (2006).
[CrossRef]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

2005 (4)

2003 (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[CrossRef] [PubMed]

2002 (1)

R. Y. Chiao and P. W. Milonni, “Fast Light, Slow Light,” Opt. Photonics News 13(6), 26–30 (2002).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

D. J. Gauthier and R. W. Boyd, “Fast Light, Slow Light and Optical Precursors: What Does It All Mean?” Photon. Spectra 1, 82–90 (2007).

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

Chen, X.

Chiao, R. Y.

R. Y. Chiao and P. W. Milonni, “Fast Light, Slow Light,” Opt. Photonics News 13(6), 26–30 (2002).
[CrossRef]

Dahan, D.

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Eisenstein, G.

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gauthier, D. J.

D. J. Gauthier and R. W. Boyd, “Fast Light, Slow Light and Optical Precursors: What Does It All Mean?” Photon. Spectra 1, 82–90 (2007).

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[CrossRef] [PubMed]

González Herráez, M.

Guo, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hu, W.

Hu, Z. F.

Jiang, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Jin, Y.

Leng, L.

Li, Q.

Li, Y. H.

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lowell, J. R.

E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Milonni, P. W.

R. Y. Chiao and P. W. Milonni, “Fast Light, Slow Light,” Opt. Photonics News 13(6), 26–30 (2002).
[CrossRef]

Neifeld, M. A.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[CrossRef] [PubMed]

Parra, E.

E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
[CrossRef]

Qiu, M.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shi, L.

Song, K. Y.

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Stenner, M. D.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[CrossRef] [PubMed]

Su, Y.

Sumetsky, M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Tan, W.

Thévenaz, L.

Tian, X.

Tomita, M.

K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E 73, 045602(R) (2006).
[CrossRef]

Tong, L.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tong, L. M.

Totsuka, K.

K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E 73, 045602(R) (2006).
[CrossRef]

Tscao, A.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Vienne, G.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Wang, J.

Wang, S. S.

Wang, Y.

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Xing, L.

Yang, D.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, Q.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Zhang, Z.

Zheng, Z.

Appl. Phys. Lett. (2)

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tscao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Nature (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature 425(6959), 695–698 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. Photonics News (3)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow-light in telecommunications,” Opt. Photonics News 17(4), 18–23 (2006).
[CrossRef]

E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
[CrossRef]

R. Y. Chiao and P. W. Milonni, “Fast Light, Slow Light,” Opt. Photonics News 13(6), 26–30 (2002).
[CrossRef]

Photon. Spectra (1)

D. J. Gauthier and R. W. Boyd, “Fast Light, Slow Light and Optical Precursors: What Does It All Mean?” Photon. Spectra 1, 82–90 (2007).

Phys. Rev. E (1)

K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E 73, 045602(R) (2006).
[CrossRef]

Science (1)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Other (2)

Y. Zhang, X. Zhang, E. Xu, and D. Huang, “Demonstration of reflected microfiber ring resonator,” in Proceedings of IEEE OptoElectronics and Communications Conference, 2009, Paper WM4.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., (New York: Academic, 1995), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the microfiber knot ring resonator with a Sagnac loop reflector. Incident wave Si travels twice in the ring by the reflection of the Sagnac loop.

Fig. 2
Fig. 2

Group delay at resonant wavelength versus coupling coefficient k1 with different transmission loss α (a) and group delay with respect to wavelength around resonances with different k1 (b).

Fig. 3
Fig. 3

Microscope image of the fabricated microfiber ring resonator connected to a Sagnac loop (a) using the drawn microfiber with diameter of ~4.2 μm (b).

Fig. 4
Fig. 4

Transmission spectrum of the microfiber resonator device (a) and zoom-in spectrum of two resonances (b). In (b), the solid curve represents the measured transmission spectrum and the dashed curve is the fitted one based on the transmission function.

Fig. 5
Fig. 5

Experimental setup for fast light using microfiber ring resonator with a Sagnac loop reflector. CW: Continuous wave; PC: Polarization controller; MZM: Mach-Zehnder modulator; PPG: Pulse pattern generator; RFS: Radio frequency synthesizer; EDFA: Erbium-doped fiber amplifier; TOF: Tunable optical filter; VOA: Variable optical attenuator; PM: Power meter.

Fig. 6
Fig. 6

(a) Normalized traces of the 5-Gb/s RZ signals. Eye diagrams of the signals off (b) and on (c) resonance.

Fig. 7
Fig. 7

Simulated pulse advancement in the microfiber device with (a) 5Gb/s, (b) 2Gb/s, and (c) 10Gb/s RZ signals, respectively. Pulse delay of 5-Gb/s RZ signal (d) is also obtained when the microfiber resonator is over-coupled.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = S r S i = 4 κ 2 ( 1 - κ 2 ) e α L 2 ( 1 κ 1 e ( α + j β ) L 1 1 1 κ 1 e ( α + j β ) L 1 ) 2

Metrics