Abstract

Based on analytical scattering theory, we develop a multipolar expansion method to investigate systematically the near-field enhancement, far-field scattering and Local Density of States (LDOS) spectra in concentric metal-insulator-metal (MIM) cylindrical nanostructures, or coaxial plasmonic nanowires (CPNs). We demonstrate that these structures support distinctive plasmonic resonances with strongly reduced scattering in the far-field zone and significant electric field enhancement in deep sub-wavelength dielectric regions. Additionally, we study systematically the effects of geometrical parameters and dielectric index on the near-field and far-field plasmonic response of CPNs in the visible and near infrared spectral range. Finally, we demonstrate that CPNs provide a convenient approach for engineering strong (almost three orders of magnitude) LDOS enhancement in sub-wavelength dielectric gaps at multiple frequencies. These results enable the engineering of multiband optical detectors and CPNs-based light emitters with simultaneously enhanced excitation and emission rates for nanoplasmonics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)
  2. R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442 (2004).
    [CrossRef]
  3. R. Zia, J.A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9,7–8 (2006).
    [CrossRef]
  4. P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures though a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
    [CrossRef]
  5. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
    [CrossRef]
  6. M. Kushwaha and B. Djafari-Rouhani, “Green-funciton theory of confined plasmons in coaxial cylindrical geometries: Zero magnetic field,” Phys. Rev. Lett. B 67, 245320 (2003).
  7. M. L. Brongersma, and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007)
  8. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  9. F. Hao, P. Nordlander, M. Burnett, and S. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76(24), 245417 (2007).
    [CrossRef]
  10. E. Prodan and P. Nordlander, “Structural Tunability of the plasmon resonances in metallic nanoshells,” Nanoletters 3(4), 543–547 (2003).
  11. J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,” Nature 399(6731), 48–51 (1999).
    [CrossRef]
  12. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
    [CrossRef] [PubMed]
  13. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [CrossRef] [PubMed]
  14. C. Colombo, M. Heiβ, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
    [CrossRef]
  15. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  16. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
    [CrossRef] [PubMed]
  17. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
    [CrossRef] [PubMed]
  18. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
    [CrossRef] [PubMed]
  19. Y. Kurokawa and H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
    [CrossRef]
  20. Y. Gong, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures,” Opt. Express 17(23), 20642–20650 (2009).
    [CrossRef] [PubMed]
  21. A. Gopinath, S. V. Boriskina, S. Selcuk, R. Li, and L. Dal Negro, “Enhancement of the 1.55mm Erbium3+ emission from quasi-periodic plasmonic arrays,” Appl. Phys. Lett. 96(7), 071113 (2010).
    [CrossRef]
  22. A. Boriskin and A. Nosich, “Whispering-Gallery and Luneberg-Lens Effects in a Beam-Fed Circularly Layered Dielectric Cylinder,” IEEE Trans. on Antennas and Propagation, Vol. 50, No. 9; (2002).
  23. A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001).
    [CrossRef] [PubMed]
  24. P. A. Martin, Multiple Scattering, (Cambridge University Press, 2006)
  25. L. Novotny, and B. Hecht, Principles of nano-optics, (Cambridge University Press, 2006)
  26. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles, (John Wiley, 1983)
  27. P. Johnson and R. Christy, “Optical constants of Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  28. G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc A. 462(2074), 3027–3059 (2006).
    [CrossRef]
  29. N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
    [CrossRef] [PubMed]
  30. Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
    [CrossRef]
  31. M. Bashevoy, V. Fedotov, and N. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005).
    [CrossRef] [PubMed]
  32. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]

2010 (1)

A. Gopinath, S. V. Boriskina, S. Selcuk, R. Li, and L. Dal Negro, “Enhancement of the 1.55mm Erbium3+ emission from quasi-periodic plasmonic arrays,” Appl. Phys. Lett. 96(7), 071113 (2010).
[CrossRef]

2009 (4)

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures though a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[CrossRef]

C. Colombo, M. Heiβ, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
[CrossRef] [PubMed]

Y. Gong, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures,” Opt. Express 17(23), 20642–20650 (2009).
[CrossRef] [PubMed]

2007 (5)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Y. Kurokawa and H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

F. Hao, P. Nordlander, M. Burnett, and S. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76(24), 245417 (2007).
[CrossRef]

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

2006 (1)

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc A. 462(2074), 3027–3059 (2006).
[CrossRef]

2005 (2)

M. Bashevoy, V. Fedotov, and N. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

2004 (2)

R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442 (2004).
[CrossRef]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

2003 (6)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

E. Prodan and P. Nordlander, “Structural Tunability of the plasmon resonances in metallic nanoshells,” Nanoletters 3(4), 543–547 (2003).

M. Kushwaha and B. Djafari-Rouhani, “Green-funciton theory of confined plasmons in coaxial cylindrical geometries: Zero magnetic field,” Phys. Rev. Lett. B 67, 245320 (2003).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[CrossRef] [PubMed]

2001 (1)

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001).
[CrossRef] [PubMed]

1999 (1)

J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,” Nature 399(6731), 48–51 (1999).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1972 (1)

P. Johnson and R. Christy, “Optical constants of Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Agarwal, R.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Asatryan, A. A.

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001).
[CrossRef] [PubMed]

Atwater, H. A.

Bashevoy, M.

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[CrossRef] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[CrossRef] [PubMed]

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, S. Selcuk, R. Li, and L. Dal Negro, “Enhancement of the 1.55mm Erbium3+ emission from quasi-periodic plasmonic arrays,” Appl. Phys. Lett. 96(7), 071113 (2010).
[CrossRef]

Botten, L. C.

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001).
[CrossRef] [PubMed]

Briggs, R. M.

Brongersma, M.

R. Zia, J.A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9,7–8 (2006).
[CrossRef]

R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442 (2004).
[CrossRef]

Brongersma, M. L.

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[CrossRef] [PubMed]

Burnett, M.

F. Hao, P. Nordlander, M. Burnett, and S. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76(24), 245417 (2007).
[CrossRef]

Busch, K.

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001).
[CrossRef] [PubMed]

Cai, D.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Catrysse, P.

R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442 (2004).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures though a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[CrossRef]

Chandran, A.

R. Zia, J.A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9,7–8 (2006).
[CrossRef]

Chong, T. C.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, “Optical constants of Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Colombo, C.

C. Colombo, M. Heiβ, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

Dal Negro, L.

A. Gopinath, S. V. Boriskina, S. Selcuk, R. Li, and L. Dal Negro, “Enhancement of the 1.55mm Erbium3+ emission from quasi-periodic plasmonic arrays,” Appl. Phys. Lett. 96(7), 071113 (2010).
[CrossRef]

Y. Gong, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures,” Opt. Express 17(23), 20642–20650 (2009).
[CrossRef] [PubMed]

de Sterke, C. M.

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001).
[CrossRef] [PubMed]

Djafari-Rouhani, B.

M. Kushwaha and B. Djafari-Rouhani, “Green-funciton theory of confined plasmons in coaxial cylindrical geometries: Zero magnetic field,” Phys. Rev. Lett. B 67, 245320 (2003).

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Duan, X.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Fan, S.

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures though a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[CrossRef]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Fedotov, V.

Fontcuberta i Morral, A.

C. Colombo, M. Heiβ, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

Giersig, M.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Gong, Y.

Gopinath, A.

A. Gopinath, S. V. Boriskina, S. Selcuk, R. Li, and L. Dal Negro, “Enhancement of the 1.55mm Erbium3+ emission from quasi-periodic plasmonic arrays,” Appl. Phys. Lett. 96(7), 071113 (2010).
[CrossRef]

Gratzel, M.

C. Colombo, M. Heiβ, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hao, F.

F. Hao, P. Nordlander, M. Burnett, and S. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76(24), 245417 (2007).
[CrossRef]

Heiß, M.

C. Colombo, M. Heiβ, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

Herczynski, A.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Hong, M. H.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Hu, J.

J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,” Nature 399(6731), 48–51 (1999).
[CrossRef]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Huang, Y.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Huang, Z. P.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jun, Y. C.

Kempa, K.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[CrossRef] [PubMed]

Kurokawa, Y.

Y. Kurokawa and H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

Kushwaha, M.

M. Kushwaha and B. Djafari-Rouhani, “Green-funciton theory of confined plasmons in coaxial cylindrical geometries: Zero magnetic field,” Phys. Rev. Lett. B 67, 245320 (2003).

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Li, R.

A. Gopinath, S. V. Boriskina, S. Selcuk, R. Li, and L. Dal Negro, “Enhancement of the 1.55mm Erbium3+ emission from quasi-periodic plasmonic arrays,” Appl. Phys. Lett. 96(7), 071113 (2010).
[CrossRef]

Y. Gong, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures,” Opt. Express 17(23), 20642–20650 (2009).
[CrossRef] [PubMed]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,” Nature 399(6731), 48–51 (1999).
[CrossRef]

Lin, Y.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Luk’yanchuk, B. S.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Maier, S.

F. Hao, P. Nordlander, M. Burnett, and S. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76(24), 245417 (2007).
[CrossRef]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[CrossRef] [PubMed]

McPhedran, R. C.

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001).
[CrossRef] [PubMed]

Milton, G. W.

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc A. 462(2074), 3027–3059 (2006).
[CrossRef]

Miyazaki, H.

Y. Kurokawa and H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Naughton, M. J.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Nicorovici, N. A.

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc A. 462(2074), 3027–3059 (2006).
[CrossRef]

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001).
[CrossRef] [PubMed]

Nordlander, P.

F. Hao, P. Nordlander, M. Burnett, and S. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76(24), 245417 (2007).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

E. Prodan and P. Nordlander, “Structural Tunability of the plasmon resonances in metallic nanoshells,” Nanoletters 3(4), 543–547 (2003).

Ouyang, M.

J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,” Nature 399(6731), 48–51 (1999).
[CrossRef]

Prodan, E.

E. Prodan and P. Nordlander, “Structural Tunability of the plasmon resonances in metallic nanoshells,” Nanoletters 3(4), 543–547 (2003).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Ren, Z. F.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Rybczynski, J.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Schuller, J. A.

R. Zia, J.A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9,7–8 (2006).
[CrossRef]

Selcuk, S.

A. Gopinath, S. V. Boriskina, S. Selcuk, R. Li, and L. Dal Negro, “Enhancement of the 1.55mm Erbium3+ emission from quasi-periodic plasmonic arrays,” Appl. Phys. Lett. 96(7), 071113 (2010).
[CrossRef]

Selker, M.

R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442 (2004).
[CrossRef]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Vuckovic, J.

Y. Gong, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures,” Opt. Express 17(23), 20642–20650 (2009).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Wang, Y.

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

Wang, Z. B.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Yang, P.

J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,” Nature 399(6731), 48–51 (1999).
[CrossRef]

Yerci, S.

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Zheludev, N.

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zia, R.

R. Zia, J.A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9,7–8 (2006).
[CrossRef]

R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures though a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[CrossRef]

J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, Z. F. Ren, Z. P. Huang, D. Cai, and M. Giersig, “Subwavelength waveguide for visible light,” Appl. Phys. Lett. 90(2), 021104 (2007).
[CrossRef]

C. Colombo, M. Heiβ, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, S. Selcuk, R. Li, and L. Dal Negro, “Enhancement of the 1.55mm Erbium3+ emission from quasi-periodic plasmonic arrays,” Appl. Phys. Lett. 96(7), 071113 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. 21(12), 2442 (2004).
[CrossRef]

Mater. Today (1)

R. Zia, J.A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9,7–8 (2006).
[CrossRef]

Nanoletters (1)

E. Prodan and P. Nordlander, “Structural Tunability of the plasmon resonances in metallic nanoshells,” Nanoletters 3(4), 543–547 (2003).

Nature (4)

J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,” Nature 399(6731), 48–51 (1999).
[CrossRef]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[CrossRef] [PubMed]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. B (4)

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70(3), 035418 (2004).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

F. Hao, P. Nordlander, M. Burnett, and S. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76(24), 245417 (2007).
[CrossRef]

Y. Kurokawa and H. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. M. de Sterke, and N. A. Nicorovici, “Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(4), 046612 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. B (1)

M. Kushwaha and B. Djafari-Rouhani, “Green-funciton theory of confined plasmons in coaxial cylindrical geometries: Zero magnetic field,” Phys. Rev. Lett. B 67, 245320 (2003).

Proc. R. Soc A. (1)

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc A. 462(2074), 3027–3059 (2006).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Other (6)

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

M. L. Brongersma, and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007)

P. A. Martin, Multiple Scattering, (Cambridge University Press, 2006)

L. Novotny, and B. Hecht, Principles of nano-optics, (Cambridge University Press, 2006)

C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles, (John Wiley, 1983)

A. Boriskin and A. Nosich, “Whispering-Gallery and Luneberg-Lens Effects in a Beam-Fed Circularly Layered Dielectric Cylinder,” IEEE Trans. on Antennas and Propagation, Vol. 50, No. 9; (2002).

Supplementary Material (2)

» Media 1: MOV (1003 KB)     
» Media 2: MOV (1589 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The scattering geometry of a multilayered cylinder of m layers each having outer radius rM, forming m + 1 zones each specified by a complex permittivity εl. The three coefficients in each zone, A,B and C will give the value of the fields in that zone. The vector rs indicates a possible location for the source.

Fig. 2
Fig. 2

(a) and (b) show the scattering efficiency (blue) and absorption efficiency (green) for two different MIM structures in air. (c) and (d) show the maximum of the electric field in the insulating layer for the same structures. The insulating layer for (a) and (c) has a thickness of 50nm and the insulating layer for (b) and (d) has a thickness of 12nm. The radius of the inner metallic core for both structures is 60nm and the outer shell thickness is 20nm. The blue dotted line in (b) is the scattering efficiency for a solid metallic wire 92nm radius.

Fig. 3
Fig. 3

Shown here are field profiles with streamlines drawn tangential to the Poynting vectors for Dark (a) and highly scattering (b) modes. The MIM structures in both (a) and (b) are made of silver and a dielectric of refractive index n = 1.5 with core radius of 60nm, dielectric gap thickness 50nm and outer shell thickness 20nm, illuminated with a TE plane wave from the left side of the frame with a wavelength of 1152nm (a) and 1183nm (b).

Fig. 4
Fig. 4

Plots (a)-(c) are of absolute value of the total electric field with streamlines drawn tangential to the Poynting vector, (d)-(f) are relative polarization charge amplitude, all for an MIM structure made of Silver and a dielectric with n = 1.5, illuminated by a TE plane wave from the left side of the plot. Plots (a), (b), (d) and (e) have a core radius of 60 nm, dielectric thickness of 12 nm, an outer shell thickness of 20 nm. Plots (a) and (d) are illuminated at 1492 nm, (b) and (e) are illuminated at 803 nm. Plots (c) and (f) have core radius 60 nm, dielectric thickness 50 nm, outer shell thickness 20 nm by radiation at a wavelength of 1181.7 nm.(Media 1 and Media 2)

Fig. 5
Fig. 5

(a), (b) and (c) respectively show the radial component of the electric field of the modes in Figs. 2(a), 2(b) and 2(c), of the same structure and wavelength. Plots (d), (e) and (f) show the azimuthal component of the electric field for these same modes.

Fig. 6
Fig. 6

(a) shows the geometry used for examining resonance of structures where the gray layers are silver and the gap is a dielectric with refractive index n = 1.5 which will be illuminated by a TE plane wave of unit amplitude. (b) and (e) are, respectively, the maximum of the total electric field in the dielectric layer and the scattering efficiency vs. wavelength and r1 with d2 = 20nm and d3 = 20nm. Plots (c) and (f) are electric field and scattering efficiency vs. wavelength and d2 with an r1 = 60nm and d3 = 20nm. Plots (d) and (g) are the electric field and scattering vs. wavelength and d3 with an r1 = 60 nm and a d2 = 20 nm for (d) and d2 = 50nm for (g).

Fig. 7
Fig. 7

The maximum of the electric field in the dielectric layer and scattering efficiency are plotted respectively in (a) and (b) as the wavelength and refractive index of the dielectric layer, n, are varied. The structures are again illuminated by a TE polarized plane wave. For (a) and (b) r1 = 60nm, d3 = 20nm, for (a) d2 = 20nm, (b) d2 = 50nm

Fig. 8
Fig. 8

Here the maximum of the normalized LDOS in the dielectric layer is plotted in log10 scale. In (a) the spectrum of LDOS is shown for a structure made of silver and insulator refractive index ni = 1.5 with r1 = 60nm, d2 = 20nm and d3 = 20nm. (b) Shows the LDOS as the wavelength and refractive index of the dielectric layer, n, are varied with r1 = 60nm, d2 = 20nm and d3 = 20nm. (c) Shows the LDOS as the wavelength and radius of the core, r1, are varied n = 1.5, d2 = 20nm and d3 = 20nm. (d) Shows the LDOS as the wavelength and the thickness of the dielectric layer, d2, are varied with r1 = 60nm, d3 = 20nm and ni = 1.5.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

U l ( r , φ ) = U s l ( r , φ ) + n = [ A n l J n ( k l r ) + B n l H n ( 1 ) ( k l r ) ] e i n φ
U s l ( r , φ ) = n = [ A n l J n ( k l r ) + B n l H n ( 1 ) ( k l r ) + C n l X n ( k l r ) ] e i n φ
X n l ( k l r ) = { J n ( k l r ) , r < r s H n ( 1 ) ( k l r ) , r > r s
ρ ( r ; ω ) = 2 ω n 2 π c 2 Im [ T r [ G ( r , r ; ω ) ] ]
U s , z = H 0 ( 1 ) ( k | r r s | ) / ( 4 i ) U s , x = H 1 ( 1 ) ( k | r r s | ) sin ( θ ) / ( 4 ) U s , y = H 1 ( 1 ) ( k | r r s | ) cos ( θ ) / ( 4 )
C n s = { 1 8 i [ H n 1 ( 1 ) ( k s r s ) + H n + 1 ( 1 ) ( k s r s ) ] , r < r s 1 8 i [ J n 1 ( k s r s ) + J n + 1 ( k s r s ) ] , r > r s
Q s c a t = λ π r M [ | B 0 M + 1 | 2 + 2 n = 1 | B n M + 1 | 2 ] Q e x t = λ π r M Re [ B 0 M + 1 + 2 n = 1 B n M + 1 ]
( J n ( k 1 r 1 ) J n ( k 2 r 1 ) H n ( 1 ) ( k 2 r 1 ) 0 0 0 1 ε 1 J n ' ( k 1 r 1 ) 1 ε 2 J n ' ( k 2 r 1 ) 1 ε 2 H n ( 1 ) ' ( k 2 r 1 ) 0 0 0 0 J n ( k 2 r 2 ) H n ( 1 ) ( k 2 r 2 ) J n ( k 3 r 2 ) H n ( 1 ) ( k 3 r 2 ) 0 0 1 ε 2 J n ' ( k 2 r 2 ) 1 ε 2 H n ( 1 ) ' ( k 2 r 2 ) 1 ε 3 J n ' ( k 3 r 2 ) 1 ε 3 H n ( 1 ) ' ( k 3 r 2 ) 0 0 0 0 J n ( k 3 r 3 ) H n ( 1 ) ( k 3 r 3 ) H n ( 1 ) ( k 4 r 3 ) 0 0 0 1 ε 3 J n ' ( k 3 r 3 ) 1 ε 3 H n ( 1 ) ' ( k 3 r 3 ) 1 ε 4 H n ( 1 ) ' ( k 4 r 3 ) ) ( A n 1 A n 2 B n 2 A n 3 B n 3 B n 4 ) =                                                       ( C n 2 X n ( k 2 r 1 ) C n 1 X n ( k 1 r 1 ) C n 2 1 ε 2 X n ' ( k 2 r 1 ) C n 1 1 ε 1 X n ' ( k 1 r 1 ) C n 3 X n ( 1 ) ( k 3 r 2 ) C n 2 X n ( 1 ) ( k 2 r 2 ) C n 3 1 ε 3 X n ( 1 ) ' ( k 3 r 2 ) C n 2 1 ε 2 X n ( 1 ) ' ( k 2 r 2 ) C n 4 X n ( 1 ) ( k 4 r 3 ) C n 3 X n ( 1 ) ( k 3 r 3 ) C n 4 1 ε 4 X n ( 1 ) ' ( k 4 r 3 ) C n 3 1 ε 3 X n ( 1 ) ' ( k 3 r 3 ) ) ( 8 )

Metrics