Abstract

Using a femtosecond Ti:Sapphire laser, micro-tracks of material damage were written into Yb:YAG crystals. Waveguiding was achieved in a channel between pairs of tracks with guiding losses of 1.3 dB/cm at a wavelength of 1063 nm, due to a stress induced change of the refractive index. Pumped at a wavelength of 941 nm, highly efficient laser oscillation in a Yb:YAG channel waveguide at a wavelength of 1030 nm was demonstrated. An output power of 0.8 W at 1.2 W of launched pump power was achieved, resulting in a record slope efficiency of 75%.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. . B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
    [CrossRef]
  2. . K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21,1729–1731 (1996).
    [CrossRef] [PubMed]
  3. . K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71,3329–3331 (1997).
    [CrossRef]
  4. . M. Pospiech,M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17,3555–3563 (2009).
    [CrossRef] [PubMed]
  5. . S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to threedimensional integrated optics,” Appl. Phys. A 77,109–111 (2003).
    [CrossRef]
  6. . S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29,2626–2628 (2004).
    [CrossRef] [PubMed]
  7. . M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34,247–249 (2009).
    [CrossRef] [PubMed]
  8. . C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007).
    [CrossRef]
  9. . J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89,081108 (2006).
    [CrossRef]
  10. . A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30,964–966 (2005).
    [CrossRef] [PubMed]
  11. . A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr 4+ crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett. 34,3881–3883 (2009).
    [CrossRef] [PubMed]
  12. . W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35,916–918 (2010).
    [CrossRef] [PubMed]
  13. . A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30,2248–2250 (2005).
    [CrossRef] [PubMed]
  14. . G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008).
    [CrossRef]
  15. . T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B DOI 10.1007/s00340-010-3929-6 (2010).
    [CrossRef]
  16. . F.M. Bain, A.A. Lagatsky, R.R. Thomson, N.D. Psaila, N.V. Kuleshov, A.K. Kar, W. Sibbett, and C.T.A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17,22417–22422 (2009).
    [CrossRef]
  17. . J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3 Al5 O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97,251–255 (2009).
    [CrossRef]
  18. . T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. of SPIE 5339,524–538 (2004).
    [CrossRef]
  19. . G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31,2690–2691 (2006).
    [CrossRef] [PubMed]

2010

. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35,916–918 (2010).
[CrossRef] [PubMed]

. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B DOI 10.1007/s00340-010-3929-6 (2010).
[CrossRef]

2009

2008

. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008).
[CrossRef]

2007

. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007).
[CrossRef]

2006

. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89,081108 (2006).
[CrossRef]

. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31,2690–2691 (2006).
[CrossRef] [PubMed]

2005

2004

. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29,2626–2628 (2004).
[CrossRef] [PubMed]

. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. of SPIE 5339,524–538 (2004).
[CrossRef]

2003

. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to threedimensional integrated optics,” Appl. Phys. A 77,109–111 (2003).
[CrossRef]

1997

. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71,3329–3331 (1997).
[CrossRef]

1996

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[CrossRef]

. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21,1729–1731 (1996).
[CrossRef] [PubMed]

Ams, M.

Apostolopoulos, V.

. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007).
[CrossRef]

Bain, F.M.

Bellini, N.

Benayas, A.

. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35,916–918 (2010).
[CrossRef] [PubMed]

. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008).
[CrossRef]

Bennion, I.

Borca, C. N.

. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007).
[CrossRef]

Brown, C.T.A.

Burghoff, J.

. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89,081108 (2006).
[CrossRef]

. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30,964–966 (2005).
[CrossRef] [PubMed]

. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to threedimensional integrated optics,” Appl. Phys. A 77,109–111 (2003).
[CrossRef]

Calmano, T.

. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B DOI 10.1007/s00340-010-3929-6 (2010).
[CrossRef]

Cantelar, E.

. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008).
[CrossRef]

Cerullo, G.

Chen, F.

Chiodo, N.

Davis, K. M.

Dekker, P.

Della Valle, G.

Dvoyrin, V. V.

Emons, M.

Feit, M. D.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[CrossRef]

Fujii, T.

. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. of SPIE 5339,524–538 (2004).
[CrossRef]

Fukuda, T.

. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. of SPIE 5339,524–538 (2004).
[CrossRef]

Gardillou, F.

. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007).
[CrossRef]

Grebing, C.

. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89,081108 (2006).
[CrossRef]

Hellmig, O.

. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B DOI 10.1007/s00340-010-3929-6 (2010).
[CrossRef]

Herman, P. R.

Herman, S.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[CrossRef]

Hirao, K.

. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71,3329–3331 (1997).
[CrossRef]

. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21,1729–1731 (1996).
[CrossRef] [PubMed]

Hosoya, H.

. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. of SPIE 5339,524–538 (2004).
[CrossRef]

Huber, G.

. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B DOI 10.1007/s00340-010-3929-6 (2010).
[CrossRef]

. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3 Al5 O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97,251–255 (2009).
[CrossRef]

Inouye, H.

. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71,3329–3331 (1997).
[CrossRef]

Ishikawa, S.

. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. of SPIE 5339,524–538 (2004).
[CrossRef]

Jacinto, C.

Jaque, D.

. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35,916–918 (2010).
[CrossRef] [PubMed]

. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008).
[CrossRef]

Kar, A.K.

Khrushchev, I.

Killi, A.

Kopf, D.

Kuleshov, N.V.

Kurkov, A. S.

Lagatsky, A.A.

Laporta, P.

Lederer, M.

Limberger, H. G.

. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007).
[CrossRef]

Marshall, G. D.

Mezentsev, V. K.

Mitchell, J.

Mitsuyu, T.

. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71,3329–3331 (1997).
[CrossRef]

Miura, K.

. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71,3329–3331 (1997).
[CrossRef]

. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21,1729–1731 (1996).
[CrossRef] [PubMed]

Morgner, U.

Nejadmalayeri, A. H.

Nolte, S.

. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3 Al5 O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97,251–255 (2009).
[CrossRef]

. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89,081108 (2006).
[CrossRef]

. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30,964–966 (2005).
[CrossRef] [PubMed]

. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to threedimensional integrated optics,” Appl. Phys. A 77,109–111 (2003).
[CrossRef]

Okhrimchuk, A. G.

Osellame, R.

Palmer, G.

Perry, M. D.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[CrossRef]

Petermann, K.

. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B DOI 10.1007/s00340-010-3929-6 (2010).
[CrossRef]

. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3 Al5 O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97,251–255 (2009).
[CrossRef]

Pollnau, M.

. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007).
[CrossRef]

Pospiech, M.

Psaila, N.D.

Qiu, J.

. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71,3329–3331 (1997).
[CrossRef]

Rademaker, K.

. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3 Al5 O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97,251–255 (2009).
[CrossRef]

Rodenas, A.

. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008).
[CrossRef]

Roso, L.

. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008).
[CrossRef]

Rubenchik, A. M.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[CrossRef]

Sakuma, K.

. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. of SPIE 5339,524–538 (2004).
[CrossRef]

Salathé, R.-P.

. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007).
[CrossRef]

Shestakov, A. V.

Sholokhov, E. M.

Shore, B. W.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[CrossRef]

Sibbett, W.

Siebenmorgen, J.

. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B DOI 10.1007/s00340-010-3929-6 (2010).
[CrossRef]

. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3 Al5 O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97,251–255 (2009).
[CrossRef]

Silva, W. F.

Steinmann, A.

Stuart, B. C.

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[CrossRef]

Sugimoto, N.

Svelto, O.

Taccheo, S.

Tan, Y.

Thomson, R.R.

Torchia, G. A.

. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35,916–918 (2010).
[CrossRef] [PubMed]

. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008).
[CrossRef]

Tünnermann, A.

. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3 Al5 O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97,251–255 (2009).
[CrossRef]

. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89,081108 (2006).
[CrossRef]

. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30,964–966 (2005).
[CrossRef] [PubMed]

. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to threedimensional integrated optics,” Appl. Phys. A 77,109–111 (2003).
[CrossRef]

Turitsyn, S. K.

Vazquez de Aldana, J. R.

Will, M.

. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30,964–966 (2005).
[CrossRef] [PubMed]

. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to threedimensional integrated optics,” Appl. Phys. A 77,109–111 (2003).
[CrossRef]

Withford, M. J.

Appl. Phys. A

. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to threedimensional integrated optics,” Appl. Phys. A 77,109–111 (2003).
[CrossRef]

Appl. Phys. B

. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B DOI 10.1007/s00340-010-3929-6 (2010).
[CrossRef]

. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3 Al5 O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97,251–255 (2009).
[CrossRef]

Appl. Phys. Lett.

. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92,111103 (2008).
[CrossRef]

. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71,3329–3331 (1997).
[CrossRef]

. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laserwritten waveguides in lithium niobate,” Appl. Phys. Lett. 89,081108 (2006).
[CrossRef]

Appl. Surf. Sci.

. C. N. Borca, V. Apostolopoulos, F. Gardillou, H. G. Limberger, M. Pollnau, and R.-P. Salathé, “Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation,” Appl. Surf. Sci. 253,8300–8303 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21,1729–1731 (1996).
[CrossRef] [PubMed]

. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30,964–966 (2005).
[CrossRef] [PubMed]

. A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr 4+ crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett. 34,3881–3883 (2009).
[CrossRef] [PubMed]

. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35,916–918 (2010).
[CrossRef] [PubMed]

. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30,2248–2250 (2005).
[CrossRef] [PubMed]

. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29,2626–2628 (2004).
[CrossRef] [PubMed]

. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34,247–249 (2009).
[CrossRef] [PubMed]

. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31,2690–2691 (2006).
[CrossRef] [PubMed]

Phys. Rev. B

. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53,1749–1761 (1996).
[CrossRef]

Proc. of SPIE

. T. Fukuda, S. Ishikawa, T. Fujii, K. Sakuma, and H. Hosoya, “Low-loss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices,” Proc. of SPIE 5339,524–538 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Microscope image of a pair of tracks written in Yb:YAG in bright-field (a) and between crossed polarizers (b); differential interference contrast (DIC) microscope image of the end facet of the crystal showing the cross-section of a pair of tracks (c); cross-section of a pair of tracks in a 45 µm thick undoped YAG sample between crossed polarizers (d)

Fig. 2.
Fig. 2.

Near field image obtained by a CCD camera of a guided mode at a wavelength of 1063 nm in a 9.25mm long channel in Yb:YAG between a pair of tracks (dashed lines) with a track distance of 26 µm. The arrow indicates the polarization of the guided light.

Fig. 3.
Fig. 3.

Schematic of the laser setup

Fig. 4.
Fig. 4.

Laser output power of each side of the waveguide as a function of launched pump power and the combined laser output power

Fig. 5.
Fig. 5.

Emission spectrum of the Yb:YAG waveguide laser (a), and near-field image of the laser mode obtained by a CCD camera (b)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n sin 2 Θ m 2 n ,
η k = d x d y Ψ 1 Ψ 2 * 2 d x d y Ψ 1 2 · d x d y Ψ 2 2 ,

Metrics