Abstract

This paper reports for the first time on the direct creating microcavities in sub-surface of stainless steel using a single Nd:YAG laser pulse. The low peak power density is used in the process, which is in the order of 1 MW/cm2. The formation of the microcavities in the sub-surface of stainless steel is an evidence of volume expulsion during laser-metal interaction. Direct patterning in the sub-surface of stainless steel is demonstrated by realizing a series of microcavities to form a pre-designed pattern. Potential applications of sub-surface patterning in metal, such as security marking, micro-heater, micro-insulator and micro-sensor, are discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Ponce, J. Picans, and M. Arronte, “Surface laser engraviging by Nd:YAG laser,” in Proceedings of SOQUE Laser ‘98, Tucson, AZ, USA, 1998, pp. 41–2.
  2. M. Navarrete, M. Villagrán-Muniz, L. Ponce, and T. Flores, “Photoacoustic detection of microcracks induced in BK7 glass by focused laser pulses,” Opt. Lasers Eng. 40(1–2), 5–11 (2003).
    [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  4. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
    [CrossRef]
  5. K. Hirao and K. Miura, “Writing waveguides and gratins in silica and related materias by a femtosecond laser,” Non-cryst Solids 239(1-3), 91–95 (1998).
    [CrossRef]
  6. A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
    [CrossRef]
  7. Y. Cheng, K. Sugioka, M. Masuda, K. Shihoyama, K. Toyoda, and K. Midorikawa, “Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser,” Opt. Express 11(15), 1809–1816 (2003).
    [CrossRef] [PubMed]
  8. Z. L. Li, D. K. Y. Low, M. K. Ho, G. C. Lim, and K. J. Moh, “Fabrication of waveguides in Foturan by femtosecond laser,” J. Laser Appl. 18(4), 320–324 (2006).
    [CrossRef]
  9. T. Dobrev, D. T. Pham, and S. S. Dimov, “ A simulation model for crater formation in laser drilling,” http://www.4m-net.org/files/papers/4M2005/02_08/02_08.PDF
  10. D. Bäuerle, Laser processing and chemistry, 2nd ed., (Springer 1995).
  11. R. E. Wagner, “Laser drilling mechanism,” J. Appl. Phys. 45(10), 4631–4637 (1974).
    [CrossRef]
  12. S. Basu and T. DobRoy, “Liquid metal expulsion during laser irradiation,” J. Appl. Phys. 72(8), 3317–3322 (1992).
    [CrossRef]
  13. K. T. Voisey, S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne, “Metal ejection during laser drilling of metals,” Mater. Sci. Eng. A 356(1–2), 414–424 (2003).
    [CrossRef]
  14. S. Lugomer and A. Maksimović, “Laser-induced bursts of subsurface liquid Mo at transition from planar to volume vaporization: ballistic and percolation surface aggregation of ejected particles,” Vacuum 47(9), 1053-1059 (1996).
    [CrossRef]
  15. D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433–5439 (1991).
    [CrossRef]
  16. X. F. Xu, “Phase explosion and its time lag in nanosecond laser ablation,” Appl. Surf. Sci. 197–198, 61–66 (2002).
    [CrossRef]
  17. A. Luft, U. Franz, A. Emsermann, and J. Kaspar, “A study of thermal and mechanical effects on materials induced by pulsed laser drilling,” Appl. Phys. A Mater. Sci. Process. 63(2), 93–101 (1996).
    [CrossRef]
  18. D. K. Y. Low, L. Li, and P. J. Byrd, “The influence of temporal pulse train modulation during laser percussion drilling,” Opt. Lasers Eng. 35(3), 149–164 (2001).
    [CrossRef]
  19. M. William, Steen, Laser Material Processing, 2nd ed., (Springer, 1998).
  20. J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Prog. Mater. Sci. 46(6), 559–632 (2001).
    [CrossRef]
  21. E. J. Cookson, D. E. Floyd, and A. J. Shih, “Design, manufacture, and analysis of metal foam electrical resistance heater,” Int. J. Mech. Sci. 48(11), 1314–1322 (2006).
    [CrossRef]
  22. M. A. Biot, “Mechnics of deformation and acoustic propagation in poros media,” J. Appl. Phys. 33(4), 1482–1498 (1962).
    [CrossRef]
  23. G. A. Kriegsmann, “Electromagnetic propagation in periodic porous structures,” Wave Motion 36(4), 457–472 (2002).
    [CrossRef]

2006 (2)

Z. L. Li, D. K. Y. Low, M. K. Ho, G. C. Lim, and K. J. Moh, “Fabrication of waveguides in Foturan by femtosecond laser,” J. Laser Appl. 18(4), 320–324 (2006).
[CrossRef]

E. J. Cookson, D. E. Floyd, and A. J. Shih, “Design, manufacture, and analysis of metal foam electrical resistance heater,” Int. J. Mech. Sci. 48(11), 1314–1322 (2006).
[CrossRef]

2003 (5)

K. T. Voisey, S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne, “Metal ejection during laser drilling of metals,” Mater. Sci. Eng. A 356(1–2), 414–424 (2003).
[CrossRef]

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Y. Cheng, K. Sugioka, M. Masuda, K. Shihoyama, K. Toyoda, and K. Midorikawa, “Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser,” Opt. Express 11(15), 1809–1816 (2003).
[CrossRef] [PubMed]

M. Navarrete, M. Villagrán-Muniz, L. Ponce, and T. Flores, “Photoacoustic detection of microcracks induced in BK7 glass by focused laser pulses,” Opt. Lasers Eng. 40(1–2), 5–11 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

2002 (2)

X. F. Xu, “Phase explosion and its time lag in nanosecond laser ablation,” Appl. Surf. Sci. 197–198, 61–66 (2002).
[CrossRef]

G. A. Kriegsmann, “Electromagnetic propagation in periodic porous structures,” Wave Motion 36(4), 457–472 (2002).
[CrossRef]

2001 (2)

D. K. Y. Low, L. Li, and P. J. Byrd, “The influence of temporal pulse train modulation during laser percussion drilling,” Opt. Lasers Eng. 35(3), 149–164 (2001).
[CrossRef]

J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Prog. Mater. Sci. 46(6), 559–632 (2001).
[CrossRef]

1998 (1)

K. Hirao and K. Miura, “Writing waveguides and gratins in silica and related materias by a femtosecond laser,” Non-cryst Solids 239(1-3), 91–95 (1998).
[CrossRef]

1996 (3)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

A. Luft, U. Franz, A. Emsermann, and J. Kaspar, “A study of thermal and mechanical effects on materials induced by pulsed laser drilling,” Appl. Phys. A Mater. Sci. Process. 63(2), 93–101 (1996).
[CrossRef]

S. Lugomer and A. Maksimović, “Laser-induced bursts of subsurface liquid Mo at transition from planar to volume vaporization: ballistic and percolation surface aggregation of ejected particles,” Vacuum 47(9), 1053-1059 (1996).
[CrossRef]

1992 (1)

S. Basu and T. DobRoy, “Liquid metal expulsion during laser irradiation,” J. Appl. Phys. 72(8), 3317–3322 (1992).
[CrossRef]

1991 (1)

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433–5439 (1991).
[CrossRef]

1974 (1)

R. E. Wagner, “Laser drilling mechanism,” J. Appl. Phys. 45(10), 4631–4637 (1974).
[CrossRef]

1962 (1)

M. A. Biot, “Mechnics of deformation and acoustic propagation in poros media,” J. Appl. Phys. 33(4), 1482–1498 (1962).
[CrossRef]

Banhart, J.

J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Prog. Mater. Sci. 46(6), 559–632 (2001).
[CrossRef]

Basu, S.

S. Basu and T. DobRoy, “Liquid metal expulsion during laser irradiation,” J. Appl. Phys. 72(8), 3317–3322 (1992).
[CrossRef]

Bhattacharya, D.

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433–5439 (1991).
[CrossRef]

Biot, M. A.

M. A. Biot, “Mechnics of deformation and acoustic propagation in poros media,” J. Appl. Phys. 33(4), 1482–1498 (1962).
[CrossRef]

Byrd, P. J.

D. K. Y. Low, L. Li, and P. J. Byrd, “The influence of temporal pulse train modulation during laser percussion drilling,” Opt. Lasers Eng. 35(3), 149–164 (2001).
[CrossRef]

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

Cheng, Y.

Chin, S. L.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Clyne, T. W.

K. T. Voisey, S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne, “Metal ejection during laser drilling of metals,” Mater. Sci. Eng. A 356(1–2), 414–424 (2003).
[CrossRef]

Cookson, E. J.

E. J. Cookson, D. E. Floyd, and A. J. Shih, “Design, manufacture, and analysis of metal foam electrical resistance heater,” Int. J. Mech. Sci. 48(11), 1314–1322 (2006).
[CrossRef]

Davis, K. M.

DobRoy, T.

S. Basu and T. DobRoy, “Liquid metal expulsion during laser irradiation,” J. Appl. Phys. 72(8), 3317–3322 (1992).
[CrossRef]

Emsermann, A.

A. Luft, U. Franz, A. Emsermann, and J. Kaspar, “A study of thermal and mechanical effects on materials induced by pulsed laser drilling,” Appl. Phys. A Mater. Sci. Process. 63(2), 93–101 (1996).
[CrossRef]

Flores, T.

M. Navarrete, M. Villagrán-Muniz, L. Ponce, and T. Flores, “Photoacoustic detection of microcracks induced in BK7 glass by focused laser pulses,” Opt. Lasers Eng. 40(1–2), 5–11 (2003).
[CrossRef]

Floyd, D. E.

E. J. Cookson, D. E. Floyd, and A. J. Shih, “Design, manufacture, and analysis of metal foam electrical resistance heater,” Int. J. Mech. Sci. 48(11), 1314–1322 (2006).
[CrossRef]

Franz, U.

A. Luft, U. Franz, A. Emsermann, and J. Kaspar, “A study of thermal and mechanical effects on materials induced by pulsed laser drilling,” Appl. Phys. A Mater. Sci. Process. 63(2), 93–101 (1996).
[CrossRef]

Hand, D. P.

K. T. Voisey, S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne, “Metal ejection during laser drilling of metals,” Mater. Sci. Eng. A 356(1–2), 414–424 (2003).
[CrossRef]

Hirao, K.

K. Hirao and K. Miura, “Writing waveguides and gratins in silica and related materias by a femtosecond laser,” Non-cryst Solids 239(1-3), 91–95 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Ho, M. K.

Z. L. Li, D. K. Y. Low, M. K. Ho, G. C. Lim, and K. J. Moh, “Fabrication of waveguides in Foturan by femtosecond laser,” J. Laser Appl. 18(4), 320–324 (2006).
[CrossRef]

Holloway, P. H.

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433–5439 (1991).
[CrossRef]

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

Jones, J. D. C.

K. T. Voisey, S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne, “Metal ejection during laser drilling of metals,” Mater. Sci. Eng. A 356(1–2), 414–424 (2003).
[CrossRef]

Kaspar, J.

A. Luft, U. Franz, A. Emsermann, and J. Kaspar, “A study of thermal and mechanical effects on materials induced by pulsed laser drilling,” Appl. Phys. A Mater. Sci. Process. 63(2), 93–101 (1996).
[CrossRef]

Kriegsmann, G. A.

G. A. Kriegsmann, “Electromagnetic propagation in periodic porous structures,” Wave Motion 36(4), 457–472 (2002).
[CrossRef]

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

Kudesia, S. S.

K. T. Voisey, S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne, “Metal ejection during laser drilling of metals,” Mater. Sci. Eng. A 356(1–2), 414–424 (2003).
[CrossRef]

Li, L.

D. K. Y. Low, L. Li, and P. J. Byrd, “The influence of temporal pulse train modulation during laser percussion drilling,” Opt. Lasers Eng. 35(3), 149–164 (2001).
[CrossRef]

Li, Z. L.

Z. L. Li, D. K. Y. Low, M. K. Ho, G. C. Lim, and K. J. Moh, “Fabrication of waveguides in Foturan by femtosecond laser,” J. Laser Appl. 18(4), 320–324 (2006).
[CrossRef]

Lim, G. C.

Z. L. Li, D. K. Y. Low, M. K. Ho, G. C. Lim, and K. J. Moh, “Fabrication of waveguides in Foturan by femtosecond laser,” J. Laser Appl. 18(4), 320–324 (2006).
[CrossRef]

Low, D. K. Y.

Z. L. Li, D. K. Y. Low, M. K. Ho, G. C. Lim, and K. J. Moh, “Fabrication of waveguides in Foturan by femtosecond laser,” J. Laser Appl. 18(4), 320–324 (2006).
[CrossRef]

D. K. Y. Low, L. Li, and P. J. Byrd, “The influence of temporal pulse train modulation during laser percussion drilling,” Opt. Lasers Eng. 35(3), 149–164 (2001).
[CrossRef]

Luft, A.

A. Luft, U. Franz, A. Emsermann, and J. Kaspar, “A study of thermal and mechanical effects on materials induced by pulsed laser drilling,” Appl. Phys. A Mater. Sci. Process. 63(2), 93–101 (1996).
[CrossRef]

Lugomer, S.

S. Lugomer and A. Maksimović, “Laser-induced bursts of subsurface liquid Mo at transition from planar to volume vaporization: ballistic and percolation surface aggregation of ejected particles,” Vacuum 47(9), 1053-1059 (1996).
[CrossRef]

Maksimovic, A.

S. Lugomer and A. Maksimović, “Laser-induced bursts of subsurface liquid Mo at transition from planar to volume vaporization: ballistic and percolation surface aggregation of ejected particles,” Vacuum 47(9), 1053-1059 (1996).
[CrossRef]

Masuda, M.

Midorikawa, K.

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratins in silica and related materias by a femtosecond laser,” Non-cryst Solids 239(1-3), 91–95 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Moh, K. J.

Z. L. Li, D. K. Y. Low, M. K. Ho, G. C. Lim, and K. J. Moh, “Fabrication of waveguides in Foturan by femtosecond laser,” J. Laser Appl. 18(4), 320–324 (2006).
[CrossRef]

Nadeau, M. C.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Navarrete, M.

M. Navarrete, M. Villagrán-Muniz, L. Ponce, and T. Flores, “Photoacoustic detection of microcracks induced in BK7 glass by focused laser pulses,” Opt. Lasers Eng. 40(1–2), 5–11 (2003).
[CrossRef]

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Petit, S.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Ponce, L.

M. Navarrete, M. Villagrán-Muniz, L. Ponce, and T. Flores, “Photoacoustic detection of microcracks induced in BK7 glass by focused laser pulses,” Opt. Lasers Eng. 40(1–2), 5–11 (2003).
[CrossRef]

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

Rodden, W. S. O.

K. T. Voisey, S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne, “Metal ejection during laser drilling of metals,” Mater. Sci. Eng. A 356(1–2), 414–424 (2003).
[CrossRef]

Saliminia, A.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Shih, A. J.

E. J. Cookson, D. E. Floyd, and A. J. Shih, “Design, manufacture, and analysis of metal foam electrical resistance heater,” Int. J. Mech. Sci. 48(11), 1314–1322 (2006).
[CrossRef]

Shihoyama, K.

Singh, R. K.

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433–5439 (1991).
[CrossRef]

Sugimoto, N.

Sugioka, K.

Toyoda, K.

Vallée, R.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Villagrán-Muniz, M.

M. Navarrete, M. Villagrán-Muniz, L. Ponce, and T. Flores, “Photoacoustic detection of microcracks induced in BK7 glass by focused laser pulses,” Opt. Lasers Eng. 40(1–2), 5–11 (2003).
[CrossRef]

Voisey, K. T.

K. T. Voisey, S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne, “Metal ejection during laser drilling of metals,” Mater. Sci. Eng. A 356(1–2), 414–424 (2003).
[CrossRef]

Wagner, R. E.

R. E. Wagner, “Laser drilling mechanism,” J. Appl. Phys. 45(10), 4631–4637 (1974).
[CrossRef]

Xu, X. F.

X. F. Xu, “Phase explosion and its time lag in nanosecond laser ablation,” Appl. Surf. Sci. 197–198, 61–66 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[CrossRef]

A. Luft, U. Franz, A. Emsermann, and J. Kaspar, “A study of thermal and mechanical effects on materials induced by pulsed laser drilling,” Appl. Phys. A Mater. Sci. Process. 63(2), 93–101 (1996).
[CrossRef]

Appl. Surf. Sci. (1)

X. F. Xu, “Phase explosion and its time lag in nanosecond laser ablation,” Appl. Surf. Sci. 197–198, 61–66 (2002).
[CrossRef]

Int. J. Mech. Sci. (1)

E. J. Cookson, D. E. Floyd, and A. J. Shih, “Design, manufacture, and analysis of metal foam electrical resistance heater,” Int. J. Mech. Sci. 48(11), 1314–1322 (2006).
[CrossRef]

J. Appl. Phys. (5)

M. A. Biot, “Mechnics of deformation and acoustic propagation in poros media,” J. Appl. Phys. 33(4), 1482–1498 (1962).
[CrossRef]

D. Bhattacharya, R. K. Singh, and P. H. Holloway, “Laser-target interactions during pulsed laser deposition of superconducting thin films,” J. Appl. Phys. 70(10), 5433–5439 (1991).
[CrossRef]

R. E. Wagner, “Laser drilling mechanism,” J. Appl. Phys. 45(10), 4631–4637 (1974).
[CrossRef]

S. Basu and T. DobRoy, “Liquid metal expulsion during laser irradiation,” J. Appl. Phys. 72(8), 3317–3322 (1992).
[CrossRef]

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

J. Laser Appl. (1)

Z. L. Li, D. K. Y. Low, M. K. Ho, G. C. Lim, and K. J. Moh, “Fabrication of waveguides in Foturan by femtosecond laser,” J. Laser Appl. 18(4), 320–324 (2006).
[CrossRef]

Mater. Sci. Eng. A (1)

K. T. Voisey, S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne, “Metal ejection during laser drilling of metals,” Mater. Sci. Eng. A 356(1–2), 414–424 (2003).
[CrossRef]

Non-cryst Solids (1)

K. Hirao and K. Miura, “Writing waveguides and gratins in silica and related materias by a femtosecond laser,” Non-cryst Solids 239(1-3), 91–95 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (2)

M. Navarrete, M. Villagrán-Muniz, L. Ponce, and T. Flores, “Photoacoustic detection of microcracks induced in BK7 glass by focused laser pulses,” Opt. Lasers Eng. 40(1–2), 5–11 (2003).
[CrossRef]

D. K. Y. Low, L. Li, and P. J. Byrd, “The influence of temporal pulse train modulation during laser percussion drilling,” Opt. Lasers Eng. 35(3), 149–164 (2001).
[CrossRef]

Opt. Lett. (1)

Prog. Mater. Sci. (1)

J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Prog. Mater. Sci. 46(6), 559–632 (2001).
[CrossRef]

Vacuum (1)

S. Lugomer and A. Maksimović, “Laser-induced bursts of subsurface liquid Mo at transition from planar to volume vaporization: ballistic and percolation surface aggregation of ejected particles,” Vacuum 47(9), 1053-1059 (1996).
[CrossRef]

Wave Motion (1)

G. A. Kriegsmann, “Electromagnetic propagation in periodic porous structures,” Wave Motion 36(4), 457–472 (2002).
[CrossRef]

Other (4)

M. William, Steen, Laser Material Processing, 2nd ed., (Springer, 1998).

L. Ponce, J. Picans, and M. Arronte, “Surface laser engraviging by Nd:YAG laser,” in Proceedings of SOQUE Laser ‘98, Tucson, AZ, USA, 1998, pp. 41–2.

T. Dobrev, D. T. Pham, and S. S. Dimov, “ A simulation model for crater formation in laser drilling,” http://www.4m-net.org/files/papers/4M2005/02_08/02_08.PDF

D. Bäuerle, Laser processing and chemistry, 2nd ed., (Springer 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental set-up.

Fig. 2
Fig. 2

Optical microscopy top view of samples after one laser pulse shot at various Z ranges: (a) 1.5-1.7 mm, (b) 1.9-2.9 mm, and (c) 3.1 mm. Figure 3 shows the SEM analyses of the top views of the samples irradiated at the Z range in Fig. 2(b). The melt spot diameters were measured to be 0.24, 0.26, 0.27 and 0.3 mm for Z = 1.9, 2.1, 2.3 and 2.5 mm, respectively. The peak power densities at each Z were calculated as 1.90, 1.68, 1.52 and 1.22 MW/cm2, respectively. The sample irradiated at Z = 1.9 mm had relatively more sputtering, and the amount sputtering gradually decreased as the Z increased to 2.5 mm. Only small amount of sputtering was observed on the sample surface for Z = 2.5 mm.

Fig. 4
Fig. 4

Cross-sectional images of CT scan of microcavities in sub-surface of stainless steel with various Zs.

Fig. 3
Fig. 3

SEM top views of laser irradiated surfaces at various Zs: (a) 1.9 mm, (b) 2.1 mm, (c) 2.3 mm and (d) 2.5 mm.

Fig. 5
Fig. 5

Typical microcavity created in stainless steel, (b) enlarged images as indicated in (a).

Fig. 6
Fig. 6

(a) Optical microscopy of the sample after laser patterning and sandpaper polishing, (b) x-ray image of sub-surface patterning.

Fig. 7
Fig. 7

(a) Closed porous surface structure generated by laser pulses; (b) illustration of patterning of the porous structure

Tables (1)

Tables Icon

Table 1 Stainless steel grade 316 material properties a

Metrics