Abstract

For the experiments of surface plasmon polaritons (SPPs) interference lithography based on attenuated total reflection-coupling mode to be done conveniently, we introduce a backside-exposure technique in this paper. The physical mechanisms of SPPs interference with the backside -exposure method are studied and the interference fringes with feature size below 65nm are experimentally obtained. The technique can be used to fabricate nanostructures conveniently with large area, and avoids the difficulties for seeking high refractive prism and matching fluid.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
    [CrossRef]
  2. T. D. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion lens systems,” Appl. Opt. 38(23), 5046–5057 (1999).
    [CrossRef]
  3. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
    [CrossRef]
  4. R. J. Blaikie and S. J. McNab, “Evanescent interferometric lithography,” Appl. Opt. 40(10), 1692–1698 (2001).
    [CrossRef]
  5. Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
    [CrossRef]
  6. J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A, Pure Appl. Opt. 8(4), 213–218 (2006).
    [CrossRef]
  7. J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, “Four beams evanescent waves interference lithography for patterning of two dimensional features,” Opt. Express 15(6), 3437–3451 (2007).
    [CrossRef] [PubMed]
  8. B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE 6154, 100–108 (2006).
  9. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, “Evanescent wave interference lithography for surface nano-structuring,” Phys. Scr. T 129, 35–37 (2007).
    [CrossRef]
  10. V. M. Murukeshan, J. K. Chua, S. K. Tan, and Q. Y. Lin, “Nano-scale three dimensional surface relief features using single exposure counterpropagating multiple evanescent waves interference phenomenon,” Opt. Express 16(18), 13857–13870 (2008).
    [CrossRef] [PubMed]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  13. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
    [CrossRef]
  14. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [CrossRef]
  15. D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13(18), 6964–6973 (2005).
    [CrossRef] [PubMed]
  16. W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmons on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005).
    [CrossRef]
  17. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [CrossRef] [PubMed]
  18. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
    [CrossRef]
  19. D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6(10), 2279–2283 (2006).
    [CrossRef] [PubMed]
  20. M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15(6), 2125–2129 (1997).
    [CrossRef]
  21. F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, “Proton beam writing,” Mater. Today 10(6), 20–29 (2007).
    [CrossRef]
  22. J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993).
    [CrossRef]
  23. X. W. Guo, J. L. Du, Y. K. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31(17), 2613–2615 (2006).
    [CrossRef] [PubMed]
  24. I. Pockrand, “Surface Plasma Oscillations at Silver Surfaces with Thin Transparent and Absorbing Coatings,” Surf. Sci. 72(3), 577–588 (1978).
    [CrossRef]

2008

2007

J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, “Four beams evanescent waves interference lithography for patterning of two dimensional features,” Opt. Express 15(6), 3437–3451 (2007).
[CrossRef] [PubMed]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, “Evanescent wave interference lithography for surface nano-structuring,” Phys. Scr. T 129, 35–37 (2007).
[CrossRef]

F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, “Proton beam writing,” Mater. Today 10(6), 20–29 (2007).
[CrossRef]

2006

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6(10), 2279–2283 (2006).
[CrossRef] [PubMed]

J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A, Pure Appl. Opt. 8(4), 213–218 (2006).
[CrossRef]

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE 6154, 100–108 (2006).

X. W. Guo, J. L. Du, Y. K. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31(17), 2613–2615 (2006).
[CrossRef] [PubMed]

2005

D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13(18), 6964–6973 (2005).
[CrossRef] [PubMed]

W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmons on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[CrossRef]

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[CrossRef]

2004

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2001

1999

T. D. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion lens systems,” Appl. Opt. 38(23), 5046–5057 (1999).
[CrossRef]

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

1997

M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15(6), 2125–2129 (1997).
[CrossRef]

1994

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

1993

J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993).
[CrossRef]

1978

I. Pockrand, “Surface Plasma Oscillations at Silver Surfaces with Thin Transparent and Absorbing Coatings,” Surf. Sci. 72(3), 577–588 (1978).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bettiol, A. A.

F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, “Proton beam writing,” Mater. Today 10(6), 20–29 (2007).
[CrossRef]

Blaikie, R. J.

Breese, M. B. H.

F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, “Proton beam writing,” Mater. Today 10(6), 20–29 (2007).
[CrossRef]

Chen, S. C.

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6(10), 2279–2283 (2006).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[CrossRef]

D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13(18), 6964–6973 (2005).
[CrossRef] [PubMed]

Chua, J. K.

Crozier, K. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Du, J. L.

Durant, S.

W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmons on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Elings, V. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Estroff, A.

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE 6154, 100–108 (2006).

Fan, Y.

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE 6154, 100–108 (2006).

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Fuh, J. Y. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, “Evanescent wave interference lithography for surface nano-structuring,” Phys. Scr. T 129, 35–37 (2007).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Guo, X. W.

Guo, Y. K.

Hirota, K.

Hong, M. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, “Evanescent wave interference lithography for surface nano-structuring,” Phys. Scr. T 129, 35–37 (2007).
[CrossRef]

Hoshiyama, S.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[CrossRef]

Ishihara, T.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

Jo, J. S.

Kaneko, F.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[CrossRef]

Kato, K.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[CrossRef]

Kawakami, T.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[CrossRef]

Kino, G. S.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Lafferty, N.

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE 6154, 100–108 (2006).

Lee, H.

W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmons on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005).
[CrossRef]

Lin, Q. Y.

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

Lu, L.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, “Evanescent wave interference lithography for surface nano-structuring,” Phys. Scr. T 129, 35–37 (2007).
[CrossRef]

Lukiyanchuk, B. S.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, “Evanescent wave interference lithography for surface nano-structuring,” Phys. Scr. T 129, 35–37 (2007).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Luo, X. G.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Manalis, S. R.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Martinez-Anton, J. C.

J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A, Pure Appl. Opt. 8(4), 213–218 (2006).
[CrossRef]

McCord, M. A.

M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15(6), 2125–2129 (1997).
[CrossRef]

McNab, S. J.

Melngailis, J.

J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993).
[CrossRef]

Milster, T. D.

Minne, S. C.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Murukeshan, V. M.

Ohdaira, Y.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[CrossRef]

Pockrand, I.

I. Pockrand, “Surface Plasma Oscillations at Silver Surfaces with Thin Transparent and Absorbing Coatings,” Surf. Sci. 72(3), 577–588 (1978).
[CrossRef]

Quate, C. F.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Shao, D. B.

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6(10), 2279–2283 (2006).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[CrossRef]

D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13(18), 6964–6973 (2005).
[CrossRef] [PubMed]

Shinbo, K.

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[CrossRef]

Smith, B. W.

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE 6154, 100–108 (2006).

Srituravanich, W.

W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmons on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Sun, C.

W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmons on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Tan, S. K.

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

van Kan, J. A.

F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, “Proton beam writing,” Mater. Today 10(6), 20–29 (2007).
[CrossRef]

Watt, F.

F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, “Proton beam writing,” Mater. Today 10(6), 20–29 (2007).
[CrossRef]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

Wilder, K.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Yao, J.

Zhang, X.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmons on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Zhou, J.

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE 6154, 100–108 (2006).

Zhou, Y.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, “Evanescent wave interference lithography for surface nano-structuring,” Phys. Scr. T 129, 35–37 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Y. Ohdaira, S. Hoshiyama, T. Kawakami, K. Shinbo, K. Kato, and F. Kaneko, “Fabrication of surface relief gratings on azo dye thin films utilizing an interference of evanescent waves,” Appl. Phys. Lett. 86(5), 051102 (2005).
[CrossRef]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[CrossRef]

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

J. C. Martinez-Anton, “Surface relief subwavelength gratings by means of total internal reflection evanescent wave interference lithography,” J. Opt. A, Pure Appl. Opt. 8(4), 213–218 (2006).
[CrossRef]

J. Vac. Sci. Technol. B

W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmons on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005).
[CrossRef]

M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15(6), 2125–2129 (1997).
[CrossRef]

Mater. Today

F. Watt, M. B. H. Breese, A. A. Bettiol, and J. A. van Kan, “Proton beam writing,” Mater. Today 10(6), 20–29 (2007).
[CrossRef]

Nano Lett.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6(10), 2279–2283 (2006).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B

J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Scr.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, “Evanescent wave interference lithography for surface nano-structuring,” Phys. Scr. T 129, 35–37 (2007).
[CrossRef]

Proc. SPIE

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE 6154, 100–108 (2006).

Surf. Sci.

I. Pockrand, “Surface Plasma Oscillations at Silver Surfaces with Thin Transparent and Absorbing Coatings,” Surf. Sci. 72(3), 577–588 (1978).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the maskless SPPIL with ATR structure. (a) Structure of prism-silver-resist-substrate. (b) Backside-exposure SPPIL structure: ε 0 , ε 1 , ε 2 and ε 3 are the permittivity of the prism, silver, resist and air respectively; the thickness of the silver layer is d1 and that of resist is d2.

Fig. 2
Fig. 2

(a) T s p p varies with d2 and incident angle: (i) n = 1.89 and(ii) n = 1.53. (b) Resolution of patterns varies with d2.

Fig. 3
Fig. 3

Simulation result by FDTD, with incident wavelength 441.6nm, thickness of silver film 40nm, refractive index of resist 1.53 and thickness 50nm. (a) Electric field distribution when refractive index of the prism is 1.89. (b) Normalized amplitude of the electric field at the interface of the metal film and resist when the refractive index of the prism is 1.89 and 1.527 respectively.

Fig. 4
Fig. 4

The SEM imaging with period 150nm. (a) Prism with high refractive index, backside-exposure. (b) Prism with low refractive index, backside-exposure. (Time for exposure and development are 18s and 35s, respectively).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

k s p p = k x h a l f s p a c e + k x p h o t o r e s i s t + k x m e t a l
k x h a l f s p a c e = ( ω / c ) [ ε 1 ε 3 / ( ε 1 + ε 3 ) ] 1 / 2
k x p h o t o r e s i s t = ( ω / c ) [ ( ε 2 ε 3 ) / ε 2 ] [ ε 1 ε 3 /( ε 1 + ε 3 ) ] 2 [ ( ε 2 ε 1 ) / ( ε 3 ε 1 ) ] ( ε 1 ε 3 ) 1/2 ( 2 π d 2 / λ ) + ( ω / c ) r 01 [ 2 / ( ε 3 ε 1 ) ] [ ε 1 ε 3 /( ε 1 + ε 3 ) ] 3/2 exp { 2 ( 2 π d 1 / λ ) [ ( ε 1 ) / ( ( ε 1 ε 3 ) 1/2 ) ] }
k x p C = ( ω / c ) [ ( ε 2 ε 3 ) / ε 2 ] ( ε 1 ε 3 / ( ε 1 + ε 3 ) ] 2 [ ( ε 2 ε 1 ) / ( ε 3 ε 1 ) ] ( ε 1 ε 3 ) 1 / 2 ( 2 π d 2 / λ )
k x p R = ( ω / c ) r 01 [ 2 / ( ε 3 ε 1 ) ] [ ε 1 ε 3 / ( ε 1 + ε 3 ) ] 3 / 2 exp { 2 ( 2 π d 1 / λ ) [ ε 1 / ( ε 1 ε 3 ) 1 / 2 ] }
k x m e t a l = k x p C { [ k x p C / 2 / Re ( k x h a l f s p a c e ) ] [ 2 ( 2 ε 3 2 ε 2 2 ) / ε 3 / ( ε 3 ε 2 ) + ( ε 1 + ε 3 ) / ( ε 3 ) ] i ε 1 / 2 / ε 1 } + k x p R { [ k x p R / 2 / Re ( k x ( h a l f s p a c e ) ] [ ( 2 ε 1 + ε 3 ) / ( ε 3 ) ] j ε 1 / ( ε 1 ε 3 ) } + k x p C k x p R / [ Re ( k x h a l f s p a c e ) ] [ ε 1 / ε 3 + 2 ε 3 / ( ε 3 ε 2 ) + ε 2 / 2 ε 3 ]
= ε 0 / ε 3 [ ( ε 0 / k 0 z + ε 1 / k 1 z ) / ( 2 ε 0 / k 0 z ) ] [ ( A + B r 01 e j k 1 z d 1 ) / ( r 23 e j k 2 z d 2 + e j k 1 z d 1 ) ]
A = [ ( ε 1 / k 1 z + ε 2 / k 2 z ) / 2 ε 1 / k 1 z ] [ ( 1 + r 12 r 23 e 2 j k 2 z d 2 ) / e j k 1 z d 1 ] ,
B = A e j k 1 z d 1 + r 23 e 2 j k 2 z d 2 e j k 1 z d 1 1 ;
r i j = ( k j z / ε j k i z / ε i ) / ( k j z / ε j + k i z / ε i ) ,
k i z = [ ε i ( ω / c ) 2 k x 2 ] 1 / 2 .

Metrics