Abstract

We present the development and study of a single bowtie nano-aperture (BNA) at the end of a monomode optical fiber as an interface between near-fields/nano-optical objects and the fiber mode. To optimize energy conversion between BNA and the single fiber mode, the BNA is opened at the apex of a specially designed polymer fiber tip which acts as an efficient mediator (like a horn optical antenna) between the two systems. As a first application, we propose to use our device as polarizing electric-field nanocollector for scanning near-field optical microscopy (SNOM). However, this BNA-on-fiber probe may also find applications in nanolithography, addressing and telecommunications as well as in situ biological and chemical probing and trapping.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  2. R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
    [Crossref]
  3. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [Crossref] [PubMed]
  4. T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ/4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
    [Crossref] [PubMed]
  5. L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
    [Crossref] [PubMed]
  6. T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–200801.4 (2005).
    [Crossref]
  7. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
    [Crossref]
  8. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
    [Crossref]
  9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  10. J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–017402.4 (2005).
    [Crossref]
  11. A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
    [Crossref] [PubMed]
  12. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
    [Crossref] [PubMed]
  13. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
    [Crossref] [PubMed]
  14. P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
    [Crossref]
  15. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
    [Crossref]
  16. M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
    [Crossref] [PubMed]
  17. L. Novotny, D. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
    [Crossref]
  18. E. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
    [Crossref] [PubMed]
  19. D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
    [PubMed]
  20. I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, and F. Baida, “The bowtie shaped nano-aperture: a modal study,” Accepted.
  21. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).
  22. J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
    [Crossref]
  23. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.
  24. T. Grosjean, M. Mivelle, and G. W. Burr, “Polarization-dependent extraction properties of bare fiber probes,” Opt. Lett. 35(3), 357–359 (2010).
    [Crossref] [PubMed]
  25. L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).
  26. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D.-J. Lougnot, “Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization,” Appl. Opt. 40, 5860–5871 (2001).
    [Crossref]
  27. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
    [Crossref] [PubMed]
  28. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
    [Crossref]
  29. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31(22), 4563–4568 (1992).
    [Crossref] [PubMed]
  30. K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
    [Crossref]
  31. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
    [Crossref] [PubMed]
  32. T. Grosjean, I. A. Ibrahim, M. A. Suarez, G. W. Burr, M. Mivelle, and D. Charraut, “Full vectorial imaging of electromagneticlight at subwavelength scale,” Opt. Express 18(6), 5809–5824 (2010).
    [Crossref] [PubMed]
  33. E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
    [Crossref]
  34. U. Schröter and A. Dereux., “Surface plasmon polaritons on metal cylinders with dielectric core.” Phys. Rev. B. 64, 125420.1–125420.10 (2001).
    [Crossref]

2010 (2)

2009 (5)

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

2008 (2)

2007 (5)

E. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
[Crossref] [PubMed]

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ/4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[Crossref] [PubMed]

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[Crossref]

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

2006 (4)

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[Crossref] [PubMed]

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[Crossref]

2005 (4)

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–017402.4 (2005).
[Crossref]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–200801.4 (2005).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

2001 (3)

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[Crossref] [PubMed]

U. Schröter and A. Dereux., “Surface plasmon polaritons on metal cylinders with dielectric core.” Phys. Rev. B. 64, 125420.1–125420.10 (2001).
[Crossref]

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D.-J. Lougnot, “Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization,” Appl. Opt. 40, 5860–5871 (2001).
[Crossref]

2000 (1)

J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
[Crossref]

1997 (1)

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

1994 (1)

1992 (1)

Allegre, J.-T.

I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, and F. Baida, “The bowtie shaped nano-aperture: a modal study,” Accepted.

Alù, A.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Bachelot, R.

Baida, F.

I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, and F. Baida, “The bowtie shaped nano-aperture: a modal study,” Accepted.

Betzig, E.

Beversluis, M.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[Crossref] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[Crossref]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.

Bortchagovsky, E.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[Crossref]

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Brown, T.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[Crossref] [PubMed]

Burger, S.

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–200801.4 (2005).
[Crossref]

Burr, G.

I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, and F. Baida, “The bowtie shaped nano-aperture: a modal study,” Accepted.

Burr, G. W.

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Capasso, F.

Chang, D.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

Charraut, D.

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Choi, S.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Choi, W.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Conley, N.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[Crossref] [PubMed]

Cubukcu, E.

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

de Abajo, F. G.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Deloeil, D.

Dereux, A.

U. Schröter and A. Dereux., “Surface plasmon polaritons on metal cylinders with dielectric core.” Phys. Rev. B. 64, 125420.1–125420.10 (2001).
[Crossref]

des Francs, G. C.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[Crossref]

Duò, L.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[Crossref]

Ecoffet, C.

Eisler, H.-J.

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–017402.4 (2005).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[Crossref]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Farahani, J.

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–017402.4 (2005).
[Crossref]

Finazzi, M.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[Crossref]

Fischer, U.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[Crossref]

Forchel, A.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.

Fromm, D.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[Crossref] [PubMed]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

Gedney, S.

J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
[Crossref]

Geisler, P.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Grober, R.

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Grosjean, T.

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).

Hakanson, U.

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–200801.4 (2005).
[Crossref]

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Harris, T. D.

Hecht, B.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[Crossref]

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–017402.4 (2005).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Hemmer, P.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

Henkel, C.

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–200801.4 (2005).
[Crossref]

Huang, J.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[Crossref]

Huang, J.-S.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.

Hulst, N. V.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ/4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[Crossref] [PubMed]

Ibrahim, I.

I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, and F. Baida, “The bowtie shaped nano-aperture: a modal study,” Accepted.

Ibrahim, I. A.

Jin, E.

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[Crossref] [PubMed]

Kalkbrenner, T.

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–200801.4 (2005).
[Crossref]

Kamp, M.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Kern, J.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.

Kihm, H.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Kihm, J.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Kim, D.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Kim, H.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Kim, J.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Kino, G.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[Crossref] [PubMed]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

Kinzel, E. C.

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Kuipers, L.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ/4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[Crossref] [PubMed]

Lee, B.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Lee, K.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Lienau, C.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Lougnot, D.-J.

Lukin, M.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

Martin, O.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Mivelle, M.

Moerland, R.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ/4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[Crossref] [PubMed]

Moerner, W.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[Crossref] [PubMed]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Molenda, D.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Murphy-DuBay, N.

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Naber, A.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[Crossref]

Novotny, L.

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[Crossref] [PubMed]

L. Novotny, D. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[Crossref]

L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).

Park, D.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Parka, Q.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Pohl, D.

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–017402.4 (2005).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

L. Novotny, D. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[Crossref]

Prober, D.

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Quidant, R.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Regli, P.

Righini, M.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Roden, J.

J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
[Crossref]

Ropers, C.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Royer, P.

Sandoghdar, V.

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–200801.4 (2005).
[Crossref]

Savoini, M.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[Crossref]

Schädle, A.

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–200801.4 (2005).
[Crossref]

Schoelkopf, R.

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Schröter, U.

U. Schröter and A. Dereux., “Surface plasmon polaritons on metal cylinders with dielectric core.” Phys. Rev. B. 64, 125420.1–125420.10 (2001).
[Crossref]

Schuck, P.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[Crossref] [PubMed]

Segerink, F.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ/4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[Crossref] [PubMed]

Smythe, E.

Sørensen, A.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

Suarez, M. A.

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[Crossref] [PubMed]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).

Taminiau, T.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ/4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[Crossref] [PubMed]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Trautman, J. K.

Uppuluri, S.

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[Crossref] [PubMed]

Uppuluri, S. M. V.

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Wang, L.

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[Crossref] [PubMed]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[Crossref]

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[Crossref] [PubMed]

Weiner, J. S.

Weinmann, P.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

Wolfe, R.

Woo, D.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Xu, X.

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[Crossref] [PubMed]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[Crossref]

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[Crossref] [PubMed]

Yoon, Y.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Youngworth, K.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[Crossref]

Appl. Phys. Lett. (2)

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[Crossref]

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Microw. Opt. Technol. Lett (1)

J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
[Crossref]

Nano Lett. (4)

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[Crossref] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ/4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[Crossref] [PubMed]

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[Crossref] [PubMed]

Nat. Photon. (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[Crossref]

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[Crossref]

Phys. Rev. B. (1)

U. Schröter and A. Dereux., “Surface plasmon polaritons on metal cylinders with dielectric core.” Phys. Rev. B. 64, 125420.1–125420.10 (2001).
[Crossref]

Phys. Rev. Lett. (8)

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–017402.4 (2005).
[Crossref]

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–200801.4 (2005).
[Crossref]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref] [PubMed]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref]

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[Crossref] [PubMed]

Other (4)

L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published.

I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, and F. Baida, “The bowtie shaped nano-aperture: a modal study,” Accepted.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the proposed nanoantenna fiber device.

Fig. 2.
Fig. 2.

Enhancement factor R of the optical electric field intensity ((xz)-plane) in the last 2 microns of the BNA fiber probe. R is the ratio between intensity in the tip apex and the maximum intensity of the input gaussian beam. The incident polarization is (a,b) parallel and (c) perpendicular to the direction (0x) of the BNA metal triangles. In (b), the color scale is mapped to R raised to the power 0.2, in order to provide a better view of the light distribution within the taper. Insets of (a) and (c) show R-factor in a transverse (xy)-plane placed 10 nm far from the BNA. Maximum values of R along this (xy)-plane are 120 in (a) and 1.5 in (c).

Fig. 3.
Fig. 3.

(a): Scheme of the theoretical configuration. (b) and (c): collection spectra for tip excitations with (b) electric and (c) magnetic dipoles oriented along the 3 spatial directions.

Fig. 4.
Fig. 4.

(a,b) Scanning electron micrograph of the BNA fiber probe: (a) side view of the overall fiber tip and (b) top view of the tip apex revealing the BNA. (c,d) far-field radiation of the system used in emission mode, for input guided waves of orthogonal linear polarizations (see figure insets). (e) Polarization diagram of the BNA used in collection mode. Solid curve: experiments, dashed curve: case of an ideal nanopolarizer: fluorescence diagram of a single molecule (dipole absorption moment) versus incident polarization. (f) collected signals of the far-field diffraction pattern of a 1D-grating, for two orientations of the BNA with respect to the incident polarization (see figure insets).

Fig. 5.
Fig. 5.

Image with the BNA-on-tip of an electric dipole oriented along (0x) and placed 10 nm far from the BNA, in vacuum (represented by a double arrow in the figure inset). Solid curve: collected signal along (0x)-axis parallel to the BNA metallic triangles; dashed curve: collected signal along perpendicular (0y)-axis.

Fig. 6.
Fig. 6.

(a): topography of the grating as measured by the BNA fiber probe, (b): corresponding optical image (scale bar: 1 micron), (c): upper curve: profile of the topography along a line perpendicular to the grooves, lower curves: profiles of the corresponding optical signal (solid line) and simulation of the intensity of the electric-field component along the BNA metallic triangles (perpendicular to the grating grooves) (dashed line).

Metrics