Abstract

We experimentally study the thickness dependence of the terahertz (THz) response in 〈110〉-oriented GaAs crystals for free space electro-optic sampling at 1.55 µm. The THz response bandwidths are analyzed and simulated under phase-matching condition with a model frequency response function. The results indicate that the detection bandwidth increases from 2 THz to 3 THz when the thickness of GaAs is reduced from 2 mm to 1 mm. Below 1 mm, the detected bandwidth is increasingly limited by the emitter characteristics and the finite probe pulse duration. The broadest bandwidth in experiment reaches 3.3 THz when using a 0.2 mm thick crystal, while it exceeds 5 THz in theory. The THz response sensitivity was studied experimentally and modeled taking into account the absorption of the THz radiation in the GaAs crystal. While absorption was found to be negligible for the crystal thickness range studied here, strong saturation is predicted theoretically for crystal thicknesses exceeding 5 mm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express 16, 9565–9570 (2008).
    [CrossRef] [PubMed]
  2. A. Schneider, M. Stillhart, and P. Günter, “High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths,” Opt. Express 14, 5376–5384 (2006).
    [CrossRef] [PubMed]
  3. J. Mangeney, and P. Crozat, “Ion-irradiated In0.53Ga0.47As photoconductive antennas for THz generation and detection at 1.55 μm wavelength,” C. R. Phys. 9, 142–152 (2008).
    [CrossRef]
  4. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
    [CrossRef]
  5. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 μm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18, 2296–2301 (2010).
    [CrossRef] [PubMed]
  6. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
    [CrossRef]
  7. S. L. Dexheimer, ed., Terahertz Spectroscopy: Principles and Applications, (CRC Press, 2007)
    [CrossRef]
  8. K. Sakai, ed., Terahertz Optoelectronics, (Springer Press, 2005)
    [CrossRef]
  9. L. Meignien, J. Mangeney, P. Crozat, L. Duvillaret, and M. Hanna, “Two-port vectorial terahertz electro-optic sampling system,” Appl. Phys. Lett. 92, 131103 (2007).
    [CrossRef]
  10. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
    [CrossRef]
  11. B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008).
    [CrossRef]
  12. M. Vossebürger, M. Brucherseifer, G. C. Cho, H. G. Roskos, and H. Kurz, “Propagation effects in electro-optic sampling of terahertz pulses in GaAs,” Appl. Opt. 37, 3368–3371 (1998).
    [CrossRef]
  13. F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
    [CrossRef]
  14. D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photo response at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
    [CrossRef]
  15. A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
    [CrossRef]
  16. J. S. Blakemore, ed., Gallium Arsenide, (The American Institute of Physics, 1987)
  17. T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, “Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared,” Opt. Commun. 7, 229–232 (1973).
    [CrossRef]
  18. O. Madelung, U. Rössler, and M. Schulz, eds., Landolt-Börnstein - Group III Condensed Matter, (Springer Press, 2001) Vol. 41A1a
  19. Q. Wu, and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
    [CrossRef]
  20. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultra broadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
    [CrossRef]
  21. H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, “Distortion of terahertz pulses in electro-optic sampling,” J. Opt. Soc. Am. B 15, 1795–1801 (1998).
    [CrossRef]
  22. P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semicond. Sci. Technol. 20, S121–S127 (2005).
    [CrossRef]
  23. J. Pastrňák, F. Karel, and O. Petřiček, “Optical absorption coefficient of semiconductors in the extrinsic region obtained by photoconductivity measurements: application to SI GaAs,” Semicond. Sci. Technol. 5, 867–870 (1990).
    [CrossRef]
  24. R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969).
    [CrossRef]

2010

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 μm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18, 2296–2301 (2010).
[CrossRef] [PubMed]

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

2008

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008).
[CrossRef]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express 16, 9565–9570 (2008).
[CrossRef] [PubMed]

J. Mangeney, and P. Crozat, “Ion-irradiated In0.53Ga0.47As photoconductive antennas for THz generation and detection at 1.55 μm wavelength,” C. R. Phys. 9, 142–152 (2008).
[CrossRef]

2007

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[CrossRef]

L. Meignien, J. Mangeney, P. Crozat, L. Duvillaret, and M. Hanna, “Two-port vectorial terahertz electro-optic sampling system,” Appl. Phys. Lett. 92, 131103 (2007).
[CrossRef]

2006

2005

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photo response at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[CrossRef]

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semicond. Sci. Technol. 20, S121–S127 (2005).
[CrossRef]

2004

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

1999

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultra broadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

1998

H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, “Distortion of terahertz pulses in electro-optic sampling,” J. Opt. Soc. Am. B 15, 1795–1801 (1998).
[CrossRef]

M. Vossebürger, M. Brucherseifer, G. C. Cho, H. G. Roskos, and H. Kurz, “Propagation effects in electro-optic sampling of terahertz pulses in GaAs,” Appl. Opt. 37, 3368–3371 (1998).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

1997

Q. Wu, and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

1990

J. Pastrňák, F. Karel, and O. Petřiček, “Optical absorption coefficient of semiconductors in the extrinsic region obtained by photoconductivity measurements: application to SI GaAs,” Semicond. Sci. Technol. 5, 867–870 (1990).
[CrossRef]

1973

T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, “Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared,” Opt. Commun. 7, 229–232 (1973).
[CrossRef]

1969

R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969).
[CrossRef]

Bakker, H. J.

Bessho, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Böttcher, J.

Brener, I.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Brown, E. R.

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photo response at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[CrossRef]

Brucherseifer, M.

Cai, Y.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Cho, G. C.

Crozat, P.

J. Mangeney, and P. Crozat, “Ion-irradiated In0.53Ga0.47As photoconductive antennas for THz generation and detection at 1.55 μm wavelength,” C. R. Phys. 9, 142–152 (2008).
[CrossRef]

L. Meignien, J. Mangeney, P. Crozat, L. Duvillaret, and M. Hanna, “Two-port vectorial terahertz electro-optic sampling system,” Appl. Phys. Lett. 92, 131103 (2007).
[CrossRef]

Dietz, R. J. B.

Driscoll, D. C.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photo response at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[CrossRef]

Duvillaret, L.

L. Meignien, J. Mangeney, P. Crozat, L. Duvillaret, and M. Hanna, “Two-port vectorial terahertz electro-optic sampling system,” Appl. Phys. Lett. 92, 131103 (2007).
[CrossRef]

Federici, J. F.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Gossard, A. C.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photo response at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[CrossRef]

Günter, P.

Hanna, M.

L. Meignien, J. Mangeney, P. Crozat, L. Duvillaret, and M. Hanna, “Two-port vectorial terahertz electro-optic sampling system,” Appl. Phys. Lett. 92, 131103 (2007).
[CrossRef]

Hanson, M. P.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photo response at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[CrossRef]

Hattori, T.

T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, “Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared,” Opt. Commun. 7, 229–232 (1973).
[CrossRef]

Hensel, H. J.

Hirosumi, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Homma, Y.

T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, “Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared,” Opt. Commun. 7, 229–232 (1973).
[CrossRef]

Hunsche, S.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultra broadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

Kadoya, Y.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[CrossRef]

Kamakura, M.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[CrossRef]

Karel, F.

J. Pastrňák, F. Karel, and O. Petřiček, “Optical absorption coefficient of semiconductors in the extrinsic region obtained by photoconductivity measurements: application to SI GaAs,” Semicond. Sci. Technol. 5, 867–870 (1990).
[CrossRef]

Kitagawa, J.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[CrossRef]

Knox, W. H.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultra broadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

Künzel, H.

Kurz, H.

Leitenstorfer, A.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultra broadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

Lopata, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Lu, H.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

Mangeney, J.

J. Mangeney, and P. Crozat, “Ion-irradiated In0.53Ga0.47As photoconductive antennas for THz generation and detection at 1.55 μm wavelength,” C. R. Phys. 9, 142–152 (2008).
[CrossRef]

L. Meignien, J. Mangeney, P. Crozat, L. Duvillaret, and M. Hanna, “Two-port vectorial terahertz electro-optic sampling system,” Appl. Phys. Lett. 92, 131103 (2007).
[CrossRef]

Maryenko, D.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

Matsui, T.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[CrossRef]

Matthäus, G.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008).
[CrossRef]

Meignien, L.

L. Meignien, J. Mangeney, P. Crozat, L. Duvillaret, and M. Hanna, “Two-port vectorial terahertz electro-optic sampling system,” Appl. Phys. Lett. 92, 131103 (2007).
[CrossRef]

Mitsuishi, A.

T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, “Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared,” Opt. Commun. 7, 229–232 (1973).
[CrossRef]

Nagai, M.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Nolte, S.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008).
[CrossRef]

Notni, G.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008).
[CrossRef]

Nuss, M. C.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultra broadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

Ohtake, H.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Ospald, F.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

Pastrnák, J.

J. Pastrňák, F. Karel, and O. Petřiček, “Optical absorption coefficient of semiconductors in the extrinsic region obtained by photoconductivity measurements: application to SI GaAs,” Semicond. Sci. Technol. 5, 867–870 (1990).
[CrossRef]

Petricek, O.

J. Pastrňák, F. Karel, and O. Petřiček, “Optical absorption coefficient of semiconductors in the extrinsic region obtained by photoconductivity measurements: application to SI GaAs,” Semicond. Sci. Technol. 5, 867–870 (1990).
[CrossRef]

Pfeiffer, L.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Planken, P. C. M.

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semicond. Sci. Technol. 20, S121–S127 (2005).
[CrossRef]

Pradarutti, B.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008).
[CrossRef]

Riehemann, S.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008).
[CrossRef]

Roehle, H.

Roskos, H. G.

Sartorius, B.

Schell, M.

Schlak, M.

Schneider, A.

Schouten, R. N.

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semicond. Sci. Technol. 20, S121–S127 (2005).
[CrossRef]

Schwagmann, A.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

Shah, J.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultra broadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

Smet, J. H.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

Stanze, D.

Stark, J. B.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Stillhart, M.

Stolen, R. H.

R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969).
[CrossRef]

Sugiura, T.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Tacke, M.

T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, “Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared,” Opt. Commun. 7, 229–232 (1973).
[CrossRef]

Takazato, A.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[CrossRef]

Tanaka, K.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Tünnermann, A.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008).
[CrossRef]

van Rijmenam, C. E. W. M.

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semicond. Sci. Technol. 20, S121–S127 (2005).
[CrossRef]

Venghaus, H.

von Klitzing, K.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

Vossebürger, M.

Wu, Q.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, “Distortion of terahertz pulses in electro-optic sampling,” J. Opt. Soc. Am. B 15, 1795–1801 (1998).
[CrossRef]

Q. Wu, and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

Wynn, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

Yoshida, M.

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

Zhang, X.-C.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, “Distortion of terahertz pulses in electro-optic sampling,” J. Opt. Soc. Am. B 15, 1795–1801 (1998).
[CrossRef]

Q. Wu, and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

Zhao, Z.-Y.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
[CrossRef]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photo response at 1.55 μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[CrossRef]

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett. 96, 141108 (2010).
[CrossRef]

Q. Wu, and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultra broadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 91, 011102 (2007).
[CrossRef]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X.-C. Zhang, and J. F. Federici, “Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection,” Appl. Phys. Lett. 73, 444–446 (1998).
[CrossRef]

L. Meignien, J. Mangeney, P. Crozat, L. Duvillaret, and M. Hanna, “Two-port vectorial terahertz electro-optic sampling system,” Appl. Phys. Lett. 92, 131103 (2007).
[CrossRef]

M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004).
[CrossRef]

R. H. Stolen, “Far-infrared absorption in high resistivity GaAs,” Appl. Phys. Lett. 15, 74–75 (1969).
[CrossRef]

C. R. Phys.

J. Mangeney, and P. Crozat, “Ion-irradiated In0.53Ga0.47As photoconductive antennas for THz generation and detection at 1.55 μm wavelength,” C. R. Phys. 9, 142–152 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm,” Opt. Commun. 281, 5031–5035 (2008).
[CrossRef]

T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke, “Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared,” Opt. Commun. 7, 229–232 (1973).
[CrossRef]

Opt. Express

Semicond. Sci. Technol.

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems,” Semicond. Sci. Technol. 20, S121–S127 (2005).
[CrossRef]

J. Pastrňák, F. Karel, and O. Petřiček, “Optical absorption coefficient of semiconductors in the extrinsic region obtained by photoconductivity measurements: application to SI GaAs,” Semicond. Sci. Technol. 5, 867–870 (1990).
[CrossRef]

Other

J. S. Blakemore, ed., Gallium Arsenide, (The American Institute of Physics, 1987)

S. L. Dexheimer, ed., Terahertz Spectroscopy: Principles and Applications, (CRC Press, 2007)
[CrossRef]

K. Sakai, ed., Terahertz Optoelectronics, (Springer Press, 2005)
[CrossRef]

O. Madelung, U. Rössler, and M. Schulz, eds., Landolt-Börnstein - Group III Condensed Matter, (Springer Press, 2001) Vol. 41A1a

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Normalized THz pulse forms detected by 〈110〉-oriented GaAs crystals with thicknesses of 2.0 mm, 1.0 mm, and 0.2 mm. (b) Fast Fourier Transform of the time domain data. The time window for the calculation of the spectra is equal for all spectra and restricted to avoid the inclusion of echoes.

Fig. 2.
Fig. 2.

THz frequency response of 〈110〉-oriented GaAs crystals with thicknesses of (a): 2 mm, (b): 1.6 mm, (c): 1.2 mm, (d): 1 mm, (e): 0.6 mm and (f): 0.2 mm, (λ 0 = 1.55 µm). In each panel, the upper curve is the calculated THz response, and the lower curve is the measured THz spectrum as detected with GaAs of the corresponding thickness.

Fig. 3.
Fig. 3.

Bandwidth as a function of thickness: Discs: measured data; solid line: cut-off frequency calculated according to the frequency response function [Eq. (5)].

Fig. 4.
Fig. 4.

THz electro-optic sampling sensitivity as a function of thickness. Discs: experimental data; dashed line: fit without THz absorption according to Eq. (6); solid line: fit including THz absorption according to Eq. (8). Inset: schematic of the THz attenuation inside a GaAs crystal.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ k = k ( v opt + v THz ) k ( v opt ) k ( v THz ) = 0 .
k ( v opt + v THz ) k ( v opt ) + v THz ( k v ) v = v opt .
n gr ( v opt ) n ph ( v THz ) = 0 ,
δ ( v THz ) = n gr ( v opt ) n ph ( v THz ) c l ,
G ( v THz ) = 2 n ph ( v THz ) + 1 × 2 ( 1 cos ( 2 π v THz δ ( v THz ) ) ) 2 π v THz δ ( v THz ) .
Δ I I = sin ( 2 π n gr 3 ( λ 0 ) γ 41 E THz λ 0 l ) 2 π n gr 3 ( λ 0 ) γ 41 E THz λ 0 l .
0 l E THz ( z ) dz = 0 l E 0 · exp ( α THz · z ) d z .
Δ I I = 4 π E 0 n gr 3 ( λ 0 ) γ 41 ( 1 exp ( α THz · l 2 ) ) α THz · λ 0 .

Metrics