Abstract

A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (~10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V2O5/ NPB/ CBP: (ppy)2Ir(acac)/ Bphen/ Bphen: Cs2CO3/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V2O5/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Gelloz and N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode,” J. Appl. Phys. 88(7), 4319–4324 (2000).
    [CrossRef]
  2. K. J. Reeson, K. P. Homewood, D. Leong, and M. Harry, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5µm,” Nature 387(6634), 686–688 (1997).
    [CrossRef]
  3. M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
    [CrossRef] [PubMed]
  4. W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
    [CrossRef] [PubMed]
  5. M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
    [CrossRef]
  6. I. D. Parker and H. H. Kim, “Fabrication of polymer light-emitting diodes using doped silicon electrodes,” Appl. Phys. Lett. 64(14), 1774–1776 (1994).
    [CrossRef]
  7. H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
    [CrossRef]
  8. L. M. H. Heinrich, J. Muller, U. Hilleringmann, K. F. Goser, and A. Holmes, “Do-Hoon Hwang, and R. Stern, “CMOS-compatible organic light-emitting diodes,” IEEE Trans. Electron. Dev. 44(8), 1249–1252 (1997).
    [CrossRef]
  9. X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
    [CrossRef]
  10. G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
    [CrossRef]
  11. C. J. Huang, S. Han, D. Grozea, A. Turak, and Z. H. Lu, “Organic light-emitting devices with silicon anodes,” J. Appl. Phys. 97(8), 086107 (2005).
    [CrossRef]
  12. R. J. Curry, W. P. Gillin, A. P. Knights, and R. Gwilliam, “Silicon-based organic light-emitting diode operating at a wavelength of 1.5µm,” Appl. Phys. Lett. 77(15), 2271–2273 (2000).
    [CrossRef]
  13. W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, “Passivated p-type silicon: hole injection tunable anode material for organic light emission,” Appl. Phys. Lett. 92(7), 073303 (2008).
    [CrossRef]
  14. X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,” Appl. Phys. Lett. 87(8), 083504 (2005).
    [CrossRef]
  15. W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
    [CrossRef]
  16. J.-B. Ha, S.-W. Yun, and J.-H. Lee, “Effect of poly silicon thickness on the formation of Ni-FUSI gate by using atomic layer deposited nickel film,” Curr. Appl. Phys. 10(1), 41–46 (2010).
    [CrossRef]
  17. L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, “Crystallization of amorphous silicon during thin‐film gold reaction,” J. Appl. Phys. 62(9), 3647–3655 (1987).
    [CrossRef]
  18. S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett. 17(4), 160–162 (1996).
    [CrossRef]
  19. C. W. Chu, C. W. Chen, S. H. Li, E. H. E. Wu, and Y. Yang, “Integration of organic light-emitting diode and organic transistor via a tandem structure,” Appl. Phys. Lett. 86(25), 253503 (2005).
    [CrossRef]
  20. M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly phosphorescence iridium complexes and their application in organic light-emitting devices,” J. Am. Chem. Soc. 125(29), 8790–8797 (2003).
    [CrossRef] [PubMed]
  21. J. F. Moulder and J. Chastain, “Silicon(Si), Nickel(Ni),” in Handbook of x-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, (Physical Electronics Division, Perkin-Elmer Corp., 1992).
  22. Z. Y. Wang, Z. J. Chen, L. X. Xiao, and Q. H. Gong, “Enhancement of top emission for organic light-emitting diode via scattering surface plasmons by nano-aggregated outcoupling layer,” Org. Electron. 10(2), 341–345 (2009).
    [CrossRef]
  23. D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(0 0 1),” Acta Mater. 54(18), 4905–4911 (2006).
    [CrossRef]
  24. W. Hayes and R. Loudon, Scattering of Light by Crystals [M], (Academic Press, 1978), 27–85.

2010 (1)

J.-B. Ha, S.-W. Yun, and J.-H. Lee, “Effect of poly silicon thickness on the formation of Ni-FUSI gate by using atomic layer deposited nickel film,” Curr. Appl. Phys. 10(1), 41–46 (2010).
[CrossRef]

2009 (1)

Z. Y. Wang, Z. J. Chen, L. X. Xiao, and Q. H. Gong, “Enhancement of top emission for organic light-emitting diode via scattering surface plasmons by nano-aggregated outcoupling layer,” Org. Electron. 10(2), 341–345 (2009).
[CrossRef]

2008 (1)

W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, “Passivated p-type silicon: hole injection tunable anode material for organic light emission,” Appl. Phys. Lett. 92(7), 073303 (2008).
[CrossRef]

2006 (2)

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(0 0 1),” Acta Mater. 54(18), 4905–4911 (2006).
[CrossRef]

2005 (3)

C. W. Chu, C. W. Chen, S. H. Li, E. H. E. Wu, and Y. Yang, “Integration of organic light-emitting diode and organic transistor via a tandem structure,” Appl. Phys. Lett. 86(25), 253503 (2005).
[CrossRef]

X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,” Appl. Phys. Lett. 87(8), 083504 (2005).
[CrossRef]

C. J. Huang, S. Han, D. Grozea, A. Turak, and Z. H. Lu, “Organic light-emitting devices with silicon anodes,” J. Appl. Phys. 97(8), 086107 (2005).
[CrossRef]

2004 (1)

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

2003 (2)

M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
[CrossRef]

M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly phosphorescence iridium complexes and their application in organic light-emitting devices,” J. Am. Chem. Soc. 125(29), 8790–8797 (2003).
[CrossRef] [PubMed]

2001 (2)

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

2000 (2)

B. Gelloz and N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode,” J. Appl. Phys. 88(7), 4319–4324 (2000).
[CrossRef]

R. J. Curry, W. P. Gillin, A. P. Knights, and R. Gwilliam, “Silicon-based organic light-emitting diode operating at a wavelength of 1.5µm,” Appl. Phys. Lett. 77(15), 2271–2273 (2000).
[CrossRef]

1999 (1)

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

1997 (2)

L. M. H. Heinrich, J. Muller, U. Hilleringmann, K. F. Goser, and A. Holmes, “Do-Hoon Hwang, and R. Stern, “CMOS-compatible organic light-emitting diodes,” IEEE Trans. Electron. Dev. 44(8), 1249–1252 (1997).
[CrossRef]

K. J. Reeson, K. P. Homewood, D. Leong, and M. Harry, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5µm,” Nature 387(6634), 686–688 (1997).
[CrossRef]

1996 (1)

S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett. 17(4), 160–162 (1996).
[CrossRef]

1994 (2)

I. D. Parker and H. H. Kim, “Fabrication of polymer light-emitting diodes using doped silicon electrodes,” Appl. Phys. Lett. 64(14), 1774–1776 (1994).
[CrossRef]

H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
[CrossRef]

1987 (1)

L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, “Crystallization of amorphous silicon during thin‐film gold reaction,” J. Appl. Phys. 62(9), 3647–3655 (1987).
[CrossRef]

Berner, D.

M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly phosphorescence iridium complexes and their application in organic light-emitting devices,” J. Am. Chem. Soc. 125(29), 8790–8797 (2003).
[CrossRef] [PubMed]

Bongiorno, C.

M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
[CrossRef]

Caristia, L.

M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
[CrossRef]

Castagna, M. E.

M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
[CrossRef]

Cerullo, M.

H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
[CrossRef]

Chen, C. W.

C. W. Chu, C. W. Chen, S. H. Li, E. H. E. Wu, and Y. Yang, “Integration of organic light-emitting diode and organic transistor via a tandem structure,” Appl. Phys. Lett. 86(25), 253503 (2005).
[CrossRef]

Chen, W. X.

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

Chen, Z. J.

Z. Y. Wang, Z. J. Chen, L. X. Xiao, and Q. H. Gong, “Enhancement of top emission for organic light-emitting diode via scattering surface plasmons by nano-aggregated outcoupling layer,” Org. Electron. 10(2), 341–345 (2009).
[CrossRef]

Chi, D. Z.

D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(0 0 1),” Acta Mater. 54(18), 4905–4911 (2006).
[CrossRef]

Chu, C. W.

C. W. Chu, C. W. Chen, S. H. Li, E. H. E. Wu, and Y. Yang, “Integration of organic light-emitting diode and organic transistor via a tandem structure,” Appl. Phys. Lett. 86(25), 253503 (2005).
[CrossRef]

Chua, S. J.

D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(0 0 1),” Acta Mater. 54(18), 4905–4911 (2006).
[CrossRef]

Coffa, S.

M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
[CrossRef]

Curry, R. J.

R. J. Curry, W. P. Gillin, A. P. Knights, and R. Gwilliam, “Silicon-based organic light-emitting diode operating at a wavelength of 1.5µm,” Appl. Phys. Lett. 77(15), 2271–2273 (2000).
[CrossRef]

Dai, L.

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

Ding, X. M.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Engström, I.

L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, “Crystallization of amorphous silicon during thin‐film gold reaction,” J. Appl. Phys. 62(9), 3647–3655 (1987).
[CrossRef]

Gal, M.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Gelloz, B.

B. Gelloz and N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode,” J. Appl. Phys. 88(7), 4319–4324 (2000).
[CrossRef]

Gillin, W. P.

R. J. Curry, W. P. Gillin, A. P. Knights, and R. Gwilliam, “Silicon-based organic light-emitting diode operating at a wavelength of 1.5µm,” Appl. Phys. Lett. 77(15), 2271–2273 (2000).
[CrossRef]

Gong, Q. H.

Z. Y. Wang, Z. J. Chen, L. X. Xiao, and Q. H. Gong, “Enhancement of top emission for organic light-emitting diode via scattering surface plasmons by nano-aggregated outcoupling layer,” Org. Electron. 10(2), 341–345 (2009).
[CrossRef]

Goser, K. F.

L. M. H. Heinrich, J. Muller, U. Hilleringmann, K. F. Goser, and A. Holmes, “Do-Hoon Hwang, and R. Stern, “CMOS-compatible organic light-emitting diodes,” IEEE Trans. Electron. Dev. 44(8), 1249–1252 (1997).
[CrossRef]

Graetzel, M.

M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly phosphorescence iridium complexes and their application in organic light-emitting devices,” J. Am. Chem. Soc. 125(29), 8790–8797 (2003).
[CrossRef] [PubMed]

Green, M. A.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Grozea, D.

C. J. Huang, S. Han, D. Grozea, A. Turak, and Z. H. Lu, “Organic light-emitting devices with silicon anodes,” J. Appl. Phys. 97(8), 086107 (2005).
[CrossRef]

Gwilliam, R.

R. J. Curry, W. P. Gillin, A. P. Knights, and R. Gwilliam, “Silicon-based organic light-emitting diode operating at a wavelength of 1.5µm,” Appl. Phys. Lett. 77(15), 2271–2273 (2000).
[CrossRef]

Gwilliam, R. M.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Ha, J.-B.

J.-B. Ha, S.-W. Yun, and J.-H. Lee, “Effect of poly silicon thickness on the formation of Ni-FUSI gate by using atomic layer deposited nickel film,” Curr. Appl. Phys. 10(1), 41–46 (2010).
[CrossRef]

Han, S.

C. J. Huang, S. Han, D. Grozea, A. Turak, and Z. H. Lu, “Organic light-emitting devices with silicon anodes,” J. Appl. Phys. 97(8), 086107 (2005).
[CrossRef]

Harry, M.

K. J. Reeson, K. P. Homewood, D. Leong, and M. Harry, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5µm,” Nature 387(6634), 686–688 (1997).
[CrossRef]

He, J.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Heinrich, L. M. H.

L. M. H. Heinrich, J. Muller, U. Hilleringmann, K. F. Goser, and A. Holmes, “Do-Hoon Hwang, and R. Stern, “CMOS-compatible organic light-emitting diodes,” IEEE Trans. Electron. Dev. 44(8), 1249–1252 (1997).
[CrossRef]

Hentzell, H. T. G.

L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, “Crystallization of amorphous silicon during thin‐film gold reaction,” J. Appl. Phys. 62(9), 3647–3655 (1987).
[CrossRef]

Hilleringmann, U.

L. M. H. Heinrich, J. Muller, U. Hilleringmann, K. F. Goser, and A. Holmes, “Do-Hoon Hwang, and R. Stern, “CMOS-compatible organic light-emitting diodes,” IEEE Trans. Electron. Dev. 44(8), 1249–1252 (1997).
[CrossRef]

Holmes, A.

L. M. H. Heinrich, J. Muller, U. Hilleringmann, K. F. Goser, and A. Holmes, “Do-Hoon Hwang, and R. Stern, “CMOS-compatible organic light-emitting diodes,” IEEE Trans. Electron. Dev. 44(8), 1249–1252 (1997).
[CrossRef]

Homewood, K. P.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

K. J. Reeson, K. P. Homewood, D. Leong, and M. Harry, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5µm,” Nature 387(6634), 686–688 (1997).
[CrossRef]

Hou, X. Y.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Huang, C. J.

C. J. Huang, S. Han, D. Grozea, A. Turak, and Z. H. Lu, “Organic light-emitting devices with silicon anodes,” J. Appl. Phys. 97(8), 086107 (2005).
[CrossRef]

Hultman, L.

L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, “Crystallization of amorphous silicon during thin‐film gold reaction,” J. Appl. Phys. 62(9), 3647–3655 (1987).
[CrossRef]

Humphry-Baker, R.

M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly phosphorescence iridium complexes and their application in organic light-emitting devices,” J. Am. Chem. Soc. 125(29), 8790–8797 (2003).
[CrossRef] [PubMed]

Joo, S. K.

S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett. 17(4), 160–162 (1996).
[CrossRef]

Kim, H. H.

I. D. Parker and H. H. Kim, “Fabrication of polymer light-emitting diodes using doped silicon electrodes,” Appl. Phys. Lett. 64(14), 1774–1776 (1994).
[CrossRef]

H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
[CrossRef]

Kim, Y. O.

H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
[CrossRef]

Knights, A. P.

R. J. Curry, W. P. Gillin, A. P. Knights, and R. Gwilliam, “Silicon-based organic light-emitting diode operating at a wavelength of 1.5µm,” Appl. Phys. Lett. 77(15), 2271–2273 (2000).
[CrossRef]

Koshida, N.

B. Gelloz and N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode,” J. Appl. Phys. 88(7), 4319–4324 (2000).
[CrossRef]

Kwock, E. W.

H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
[CrossRef]

Kwok, H. S.

X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,” Appl. Phys. Lett. 87(8), 083504 (2005).
[CrossRef]

Ledain, S.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Lee, J.-H.

J.-B. Ha, S.-W. Yun, and J.-H. Lee, “Effect of poly silicon thickness on the formation of Ni-FUSI gate by using atomic layer deposited nickel film,” Curr. Appl. Phys. 10(1), 41–46 (2010).
[CrossRef]

Lee, S. T.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Lee, S. W.

S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett. 17(4), 160–162 (1996).
[CrossRef]

Leong, D.

K. J. Reeson, K. P. Homewood, D. Leong, and M. Harry, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5µm,” Nature 387(6634), 686–688 (1997).
[CrossRef]

Li, S. H.

C. W. Chu, C. W. Chen, S. H. Li, E. H. E. Wu, and Y. Yang, “Integration of organic light-emitting diode and organic transistor via a tandem structure,” Appl. Phys. Lett. 86(25), 253503 (2005).
[CrossRef]

Liao, L. S.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Liu, W. M.

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

Loomans, M. E.

D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(0 0 1),” Acta Mater. 54(18), 4905–4911 (2006).
[CrossRef]

Lourenço, M. A.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Lu, M.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Lu, Z. H.

C. J. Huang, S. Han, D. Grozea, A. Turak, and Z. H. Lu, “Organic light-emitting devices with silicon anodes,” J. Appl. Phys. 97(8), 086107 (2005).
[CrossRef]

Ma, D.

D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(0 0 1),” Acta Mater. 54(18), 4905–4911 (2006).
[CrossRef]

Ma, G. L.

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

Mangano, R.

M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
[CrossRef]

Meng, Z. G.

X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,” Appl. Phys. Lett. 87(8), 083504 (2005).
[CrossRef]

Messina, A.

M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
[CrossRef]

Miller, T. M.

H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
[CrossRef]

Monaco, M.

M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
[CrossRef]

Morris, M. D.

H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
[CrossRef]

Muller, J.

L. M. H. Heinrich, J. Muller, U. Hilleringmann, K. F. Goser, and A. Holmes, “Do-Hoon Hwang, and R. Stern, “CMOS-compatible organic light-emitting diodes,” IEEE Trans. Electron. Dev. 44(8), 1249–1252 (1997).
[CrossRef]

Nazeeruddin, M. K.

M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly phosphorescence iridium complexes and their application in organic light-emitting devices,” J. Am. Chem. Soc. 125(29), 8790–8797 (2003).
[CrossRef] [PubMed]

Ng, W. L.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Parker, I. D.

I. D. Parker and H. H. Kim, “Fabrication of polymer light-emitting diodes using doped silicon electrodes,” Appl. Phys. Lett. 64(14), 1774–1776 (1994).
[CrossRef]

Peng, H. J.

X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,” Appl. Phys. Lett. 87(8), 083504 (2005).
[CrossRef]

Psaras, P. A.

L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, “Crystallization of amorphous silicon during thin‐film gold reaction,” J. Appl. Phys. 62(9), 3647–3655 (1987).
[CrossRef]

Qiao, Y. P.

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

Qin, G. G.

W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, “Passivated p-type silicon: hole injection tunable anode material for organic light emission,” Appl. Phys. Lett. 92(7), 073303 (2008).
[CrossRef]

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

Ran, G. Z.

W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, “Passivated p-type silicon: hole injection tunable anode material for organic light emission,” Appl. Phys. Lett. 92(7), 073303 (2008).
[CrossRef]

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

Reece, P. J.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Reeson, K. J.

K. J. Reeson, K. P. Homewood, D. Leong, and M. Harry, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5µm,” Nature 387(6634), 686–688 (1997).
[CrossRef]

Rivier, S.

M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly phosphorescence iridium complexes and their application in organic light-emitting devices,” J. Am. Chem. Soc. 125(29), 8790–8797 (2003).
[CrossRef] [PubMed]

Robertsson, A.

L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, “Crystallization of amorphous silicon during thin‐film gold reaction,” J. Appl. Phys. 62(9), 3647–3655 (1987).
[CrossRef]

Shao, G.

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Sun, J. X.

X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,” Appl. Phys. Lett. 87(8), 083504 (2005).
[CrossRef]

Tao, F. G.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Turak, A.

C. J. Huang, S. Han, D. Grozea, A. Turak, and Z. H. Lu, “Organic light-emitting devices with silicon anodes,” J. Appl. Phys. 97(8), 086107 (2005).
[CrossRef]

Wang, A.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Wang, P. F.

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

Wang, W. D.

D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(0 0 1),” Acta Mater. 54(18), 4905–4911 (2006).
[CrossRef]

Wang, Z. Y.

Z. Y. Wang, Z. J. Chen, L. X. Xiao, and Q. H. Gong, “Enhancement of top emission for organic light-emitting diode via scattering surface plasmons by nano-aggregated outcoupling layer,” Org. Electron. 10(2), 341–345 (2009).
[CrossRef]

Westerwick, E. H.

H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
[CrossRef]

Wong, A. S. W.

D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(0 0 1),” Acta Mater. 54(18), 4905–4911 (2006).
[CrossRef]

Wong, M.

X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,” Appl. Phys. Lett. 87(8), 083504 (2005).
[CrossRef]

Wu, E. H. E.

C. W. Chu, C. W. Chen, S. H. Li, E. H. E. Wu, and Y. Yang, “Integration of organic light-emitting diode and organic transistor via a tandem structure,” Appl. Phys. Lett. 86(25), 253503 (2005).
[CrossRef]

Wu, S. K.

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

Xiao, L. X.

Z. Y. Wang, Z. J. Chen, L. X. Xiao, and Q. H. Gong, “Enhancement of top emission for organic light-emitting diode via scattering surface plasmons by nano-aggregated outcoupling layer,” Org. Electron. 10(2), 341–345 (2009).
[CrossRef]

Xiong, Z. H.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Xu, A. G.

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

Xu, W. J.

W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, “Passivated p-type silicon: hole injection tunable anode material for organic light emission,” Appl. Phys. Lett. 92(7), 073303 (2008).
[CrossRef]

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

Yang, Y.

C. W. Chu, C. W. Chen, S. H. Li, E. H. E. Wu, and Y. Yang, “Integration of organic light-emitting diode and organic transistor via a tandem structure,” Appl. Phys. Lett. 86(25), 253503 (2005).
[CrossRef]

Yun, S.-W.

J.-B. Ha, S.-W. Yun, and J.-H. Lee, “Effect of poly silicon thickness on the formation of Ni-FUSI gate by using atomic layer deposited nickel film,” Curr. Appl. Phys. 10(1), 41–46 (2010).
[CrossRef]

Zhang, B. R.

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

Zhao, J.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Zhao, W. Q.

W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, “Passivated p-type silicon: hole injection tunable anode material for organic light emission,” Appl. Phys. Lett. 92(7), 073303 (2008).
[CrossRef]

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

Zhou, C. E.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Zhou, X.

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

Zhu, X. L.

X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,” Appl. Phys. Lett. 87(8), 083504 (2005).
[CrossRef]

Zuppiroli, L.

M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly phosphorescence iridium complexes and their application in organic light-emitting devices,” J. Am. Chem. Soc. 125(29), 8790–8797 (2003).
[CrossRef] [PubMed]

Acta Mater. (1)

D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(0 0 1),” Acta Mater. 54(18), 4905–4911 (2006).
[CrossRef]

Appl. Phys. Lett. (8)

I. D. Parker and H. H. Kim, “Fabrication of polymer light-emitting diodes using doped silicon electrodes,” Appl. Phys. Lett. 64(14), 1774–1776 (1994).
[CrossRef]

X. Zhou, J. He, L. S. Liao, M. Lu, Z. H. Xiong, X. M. Ding, X. Y. Hou, F. G. Tao, C. E. Zhou, and S. T. Lee, “Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode,” Appl. Phys. Lett. 74(4), 609–611 (1999).
[CrossRef]

G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004).
[CrossRef]

R. J. Curry, W. P. Gillin, A. P. Knights, and R. Gwilliam, “Silicon-based organic light-emitting diode operating at a wavelength of 1.5µm,” Appl. Phys. Lett. 77(15), 2271–2273 (2000).
[CrossRef]

W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, “Passivated p-type silicon: hole injection tunable anode material for organic light emission,” Appl. Phys. Lett. 92(7), 073303 (2008).
[CrossRef]

X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode,” Appl. Phys. Lett. 87(8), 083504 (2005).
[CrossRef]

W. Q. Zhao, G. Z. Ran, G. L. Ma, W. J. Xu, L. Dai, W. M. Liu, P. F. Wang, and G. G. Qin, “Efficient 1.54 μm light emitting diode with nanometer thick polycrystalline Si anode and organic sandwich structure,” Appl. Phys. Lett. 89(2), 022109 (2006).
[CrossRef]

C. W. Chu, C. W. Chen, S. H. Li, E. H. E. Wu, and Y. Yang, “Integration of organic light-emitting diode and organic transistor via a tandem structure,” Appl. Phys. Lett. 86(25), 253503 (2005).
[CrossRef]

Curr. Appl. Phys. (1)

J.-B. Ha, S.-W. Yun, and J.-H. Lee, “Effect of poly silicon thickness on the formation of Ni-FUSI gate by using atomic layer deposited nickel film,” Curr. Appl. Phys. 10(1), 41–46 (2010).
[CrossRef]

IEEE Electron Device Lett. (1)

S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett. 17(4), 160–162 (1996).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

L. M. H. Heinrich, J. Muller, U. Hilleringmann, K. F. Goser, and A. Holmes, “Do-Hoon Hwang, and R. Stern, “CMOS-compatible organic light-emitting diodes,” IEEE Trans. Electron. Dev. 44(8), 1249–1252 (1997).
[CrossRef]

J. Am. Chem. Soc. (1)

M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, and M. Graetzel, “Highly phosphorescence iridium complexes and their application in organic light-emitting devices,” J. Am. Chem. Soc. 125(29), 8790–8797 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A. Psaras, “Crystallization of amorphous silicon during thin‐film gold reaction,” J. Appl. Phys. 62(9), 3647–3655 (1987).
[CrossRef]

C. J. Huang, S. Han, D. Grozea, A. Turak, and Z. H. Lu, “Organic light-emitting devices with silicon anodes,” J. Appl. Phys. 97(8), 086107 (2005).
[CrossRef]

B. Gelloz and N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode,” J. Appl. Phys. 88(7), 4319–4324 (2000).
[CrossRef]

J. Lightwave Technol. (1)

H. H. Kim, T. M. Miller, E. H. Westerwick, Y. O. Kim, E. W. Kwock, M. D. Morris, and M. Cerullo, “Silicon compatible organic light emitting diode,” J. Lightwave Technol. 12(12), 2107–2113 (1994).
[CrossRef]

Nature (3)

K. J. Reeson, K. P. Homewood, D. Leong, and M. Harry, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5µm,” Nature 387(6634), 686–688 (1997).
[CrossRef]

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

W. L. Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410(6825), 192–194 (2001).
[CrossRef] [PubMed]

Org. Electron. (1)

Z. Y. Wang, Z. J. Chen, L. X. Xiao, and Q. H. Gong, “Enhancement of top emission for organic light-emitting diode via scattering surface plasmons by nano-aggregated outcoupling layer,” Org. Electron. 10(2), 341–345 (2009).
[CrossRef]

Physica E (1)

M. E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, and C. Bongiorno, “Si-based materials and devices for light emission in silicon,” Physica E 16(3-4), 547–553 (2003).
[CrossRef]

Other (2)

J. F. Moulder and J. Chastain, “Silicon(Si), Nickel(Ni),” in Handbook of x-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, (Physical Electronics Division, Perkin-Elmer Corp., 1992).

W. Hayes and R. Loudon, Scattering of Light by Crystals [M], (Academic Press, 1978), 27–85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic structure of the PhOLED, (b) the electroluminescence spectrum of the PhOLED; the inset is the molecule structure of the phosphorescent emitter (ppy)2Ir(acac).

Fig. 2
Fig. 2

XPS spectra of (a) Si (2p) and (b) Ni (2p) for the annealed Ni/ amorphous p-Si bi-layer with an Ni layer thickness of 2 nm.

Fig. 3
Fig. 3

(a) Sheet resistance and transmissivity at 520 nm of Ni silicide/ NTPS bi-layer versus initial Ni layer thickness and (b) PhOLED efficiencies versus initial Ni layer thickness.

Fig. 4
Fig. 4

(a) Current–voltage and luminance–voltage curves, (b) current-efficiency voltage and power-efficiency voltage curves for the Ni-layer-thickness optimized PhOLED.

Fig. 5
Fig. 5

(a) Raman shift spectra for the Ni silicide/ NTPS bi-layers with different initial Ni layer thicknesses of 0.75, 1, 1.5, 2, 3, and 4 nm; (b) a partial HRTEM top-view image for the Ni silicide/ NTPS composite anode with an initial Ni layer thickness of 2 nm.

Metrics