Abstract

The quantification of total hemoglobin concentration (HbT) obtained from multi-modality image-guided near infrared spectroscopy (IG-NIRS) was characterized using the boundary element method (BEM) for 3D image reconstruction. Multi-modality IG-NIRS systems use a priori information to guide the reconstruction process. While this has been shown to improve resolution, the effect on quantitative accuracy is unclear. Here, through systematic contrast-detail analysis, the fidelity of IG-NIRS in quantifying HbT was examined using 3D simulations. These simulations show that HbT could be recovered for medium sized (20mm in 100mm total diameter) spherical inclusions with an average error of 15%, for the physiologically relevant situation of 2:1 or higher contrast between background and inclusion. Using partial 3D volume meshes to reduce the ill-posed nature of the image reconstruction, inclusions as small as 14mm could be accurately quantified with less than 15% error, for contrasts of 1.5 or higher. This suggests that 3D IG-NIRS provides quantitatively accurate results for sizes seen early in treatment cycle of patients undergoing neoadjuvant chemotherapy when the tumors are larger than 30mm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
    [CrossRef] [PubMed]
  2. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
    [PubMed]
  3. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  4. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
    [CrossRef] [PubMed]
  5. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Applied Optics 45, 8142–8151 (2006).
    [CrossRef] [PubMed]
  6. M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics,” IEEE trans. Biomed. Eng. 36, 1146–1154 (1989).
    [CrossRef] [PubMed]
  7. G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation,” Optics Express 16, 17,484–17,504 (2008).
    [CrossRef]
  8. A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
    [CrossRef] [PubMed]
  9. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” Journal Biomed Opt 13, 044,006 (2008).
  10. C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,” Anesthesiology 77, 656–661 (1992).
    [CrossRef] [PubMed]
  11. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).
  12. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
    [PubMed]
  13. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys Med Biol 50, 2489–2502 (2005).
    [CrossRef] [PubMed]
  14. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
    [CrossRef]
  15. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys Med Biol 50, 2451–2468 (2005).
    [CrossRef] [PubMed]
  16. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
    [CrossRef]
  17. S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
    [CrossRef] [PubMed]
  18. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
    [CrossRef] [PubMed]
  19. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl Opt 38, 5480–5490 (1999).
    [CrossRef]
  20. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl Opt 42, 3117–3128 (2003).
    [CrossRef] [PubMed]
  21. D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
    [CrossRef] [PubMed]
  22. C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications,” Radiology 244, 672–691 (2007).
    [CrossRef] [PubMed]
  23. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
    [CrossRef]
  24. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
    [CrossRef] [PubMed]
  25. V. Ntziachristos, “Concurrent diffuse optical tomography, spectroscopy and magnetic resonance imaging of Breast Cancer,” Ph.D. thesis, UPenn (2000).
  26. G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans on Med Imaging 27, 752–765 (2008).
    [CrossRef]
  27. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt Express 15, 8043–8058 (2007).
    [CrossRef] [PubMed]
  28. G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
    [CrossRef] [PubMed]
  29. M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Physics in Medicine and Biology 44, 2703–2721 (1999).
    [CrossRef] [PubMed]
  30. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information,” Physics in Medicine and Biology 50, 2837–2858 (2005).
    [CrossRef] [PubMed]
  31. A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
    [CrossRef] [PubMed]
  32. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–168 (1991).
    [CrossRef]
  33. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). APR INVERSE PROBL.
    [CrossRef]
  34. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med Phys 20, 299–309 (1993).
    [CrossRef] [PubMed]
  35. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med Phys 22, 691–701 (1995).
    [CrossRef] [PubMed]
  36. S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med Phys 34, 4545–4557 (2007).
    [CrossRef] [PubMed]
  37. R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging,” J. Comput. Assis. Tomogr. 15, 297–303 (1991).
    [CrossRef]
  38. G. Cohen, “Contrast-detail-dose analysis of six different computed tomographic scanners,” J. Comput. Assis. Tomogr. 3, 197–203 (1979).
    [CrossRef]
  39. K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
    [CrossRef]
  40. S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging,” Med Phys 9, 4–12 (1982).
    [CrossRef] [PubMed]
  41. “Mimics Software,” http://materialise.com/mimics.
  42. A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532 (2006).
    [CrossRef]
  43. S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Image-guided near infrared spectroscopy using boundary element method: phantom validation,” in Multimodal Biomedical Imaging IV, vol. 7171, p. 717103 (SPIE, 2009).
  44. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
    [CrossRef]
  45. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl Opt 44, 1858–1869 (2005).
    [CrossRef] [PubMed]
  46. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
    [CrossRef] [PubMed]
  47. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt Lett 29, 256–258 (2004). 0146-9592 Journal Article.
    [CrossRef] [PubMed]
  48. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
    [CrossRef] [PubMed]
  49. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
    [CrossRef]
  50. B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt Lett 23, 1716–1718 (1998).
    [CrossRef]
  51. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
    [CrossRef] [PubMed]
  52. M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl Opt 42, 4102–4114 (2003).
    [CrossRef] [PubMed]
  53. B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J Biomed Opt 11, 33,001 (2006).
    [CrossRef]
  54. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
    [CrossRef] [PubMed]
  55. N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” Journal of Biomed Opt 9, 534–540 (2004).
    [CrossRef]
  56. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” Journal of Biomed Opt 11, 041,102–116 (2006).
  57. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem Photobiol 72, 383–391 (2000).
    [PubMed]
  58. J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity,” Med Phys 37, 419–426 (2010).
    [CrossRef] [PubMed]
  59. M. C. Stahel, M. Wolf, A. Baños, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles,” Lasers Med Sci 24, 901–907 (2009).
    [CrossRef] [PubMed]
  60. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
    [CrossRef] [PubMed]
  61. B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J Biomed Opt 14, 034,041 (2009).
    [CrossRef]
  62. J. Wang, “Broadband Near-Infrared Tomography For Breast Cancer Imaging,” Ph.D. thesis, Dart-mouth College (Department of Physics and Astronomy) (2009).
  63. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
    [CrossRef] [PubMed]
  64. S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
    [PubMed]
  65. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J Biomed Opt 14, 054,030 (2009).
    [CrossRef]
  66. J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
    [CrossRef] [PubMed]

2010 (1)

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity,” Med Phys 37, 419–426 (2010).
[CrossRef] [PubMed]

2009 (6)

M. C. Stahel, M. Wolf, A. Baños, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles,” Lasers Med Sci 24, 901–907 (2009).
[CrossRef] [PubMed]

B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J Biomed Opt 14, 034,041 (2009).
[CrossRef]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J Biomed Opt 14, 054,030 (2009).
[CrossRef]

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

2008 (4)

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation,” Optics Express 16, 17,484–17,504 (2008).
[CrossRef]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” Journal Biomed Opt 13, 044,006 (2008).

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans on Med Imaging 27, 752–765 (2008).
[CrossRef]

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

2007 (4)

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt Express 15, 8043–8058 (2007).
[CrossRef] [PubMed]

C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications,” Radiology 244, 672–691 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med Phys 34, 4545–4557 (2007).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
[CrossRef] [PubMed]

2006 (5)

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Applied Optics 45, 8142–8151 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” Journal of Biomed Opt 11, 041,102–116 (2006).

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J Biomed Opt 11, 33,001 (2006).
[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532 (2006).
[CrossRef]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

2005 (12)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl Opt 44, 1858–1869 (2005).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys Med Biol 50, 2489–2502 (2005).
[CrossRef] [PubMed]

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys Med Biol 50, 2451–2468 (2005).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information,” Physics in Medicine and Biology 50, 2837–2858 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
[CrossRef] [PubMed]

2004 (6)

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” Journal of Biomed Opt 9, 534–540 (2004).
[CrossRef]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt Lett 29, 256–258 (2004). 0146-9592 Journal Article.
[CrossRef] [PubMed]

2003 (6)

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl Opt 42, 4102–4114 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl Opt 42, 3117–3128 (2003).
[CrossRef] [PubMed]

2002 (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

2001 (1)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

2000 (2)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem Photobiol 72, 383–391 (2000).
[PubMed]

1999 (3)

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl Opt 38, 5480–5490 (1999).
[CrossRef]

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Physics in Medicine and Biology 44, 2703–2721 (1999).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). APR INVERSE PROBL.
[CrossRef]

1998 (1)

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt Lett 23, 1716–1718 (1998).
[CrossRef]

1995 (2)

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med Phys 22, 691–701 (1995).
[CrossRef] [PubMed]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med Phys 20, 299–309 (1993).
[CrossRef] [PubMed]

1992 (1)

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,” Anesthesiology 77, 656–661 (1992).
[CrossRef] [PubMed]

1991 (2)

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–168 (1991).
[CrossRef]

R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging,” J. Comput. Assis. Tomogr. 15, 297–303 (1991).
[CrossRef]

1989 (1)

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics,” IEEE trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

1982 (1)

S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging,” Med Phys 9, 4–12 (1982).
[CrossRef] [PubMed]

1979 (1)

G. Cohen, “Contrast-detail-dose analysis of six different computed tomographic scanners,” J. Comput. Assis. Tomogr. 3, 197–203 (1979).
[CrossRef]

Arridge, S. R.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532 (2006).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). APR INVERSE PROBL.
[CrossRef]

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Physics in Medicine and Biology 44, 2703–2721 (1999).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med Phys 20, 299–309 (1993).
[CrossRef] [PubMed]

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

Backhaus, M.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Baek, H. M.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

Bahri, S.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

Baños, A.

M. C. Stahel, M. Wolf, A. Baños, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles,” Lasers Med Sci 24, 901–907 (2009).
[CrossRef] [PubMed]

Bassi, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J Biomed Opt 14, 054,030 (2009).
[CrossRef]

Beuthan, J.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Birgul, O.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

Blackmore, K. M.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity,” Med Phys 37, 419–426 (2010).
[CrossRef] [PubMed]

Bluemke, D. A.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Boas, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Boas, D. A.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans on Med Imaging 27, 752–765 (2008).
[CrossRef]

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Applied Optics 45, 8142–8151 (2006).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt Lett 29, 256–258 (2004). 0146-9592 Journal Article.
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

Boverman, G.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans on Med Imaging 27, 752–765 (2008).
[CrossRef]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

Brendel, B.

B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J Biomed Opt 14, 034,041 (2009).
[CrossRef]

Briest, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

Brooks, D.

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

Brooks, D. H.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans on Med Imaging 27, 752–765 (2008).
[CrossRef]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
[CrossRef] [PubMed]

Brooksby, B.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl Opt 42, 3117–3128 (2003).
[CrossRef] [PubMed]

Brooksby, B. A.

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J Biomed Opt 11, 33,001 (2006).
[CrossRef]

Brukilacchio, T. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Bunting, C. F.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation,” Optics Express 16, 17,484–17,504 (2008).
[CrossRef]

Busch, D. R.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

Butler, J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” Journal of Biomed Opt 9, 534–540 (2004).
[CrossRef]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Butler, J. A.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

Carpenter, C.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt Express 15, 8043–8058 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med Phys 34, 4545–4557 (2007).
[CrossRef] [PubMed]

S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Image-guided near infrared spectroscopy using boundary element method: phantom validation,” in Multimodal Biomedical Imaging IV, vol. 7171, p. 717103 (SPIE, 2009).

Carpenter, C. M.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

Causer, P.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” Journal of Biomed Opt 9, 534–540 (2004).
[CrossRef]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Cerussi, A. E.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

Chance, B.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information,” Physics in Medicine and Biology 50, 2837–2858 (2005).
[CrossRef] [PubMed]

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,” Anesthesiology 77, 656–661 (1992).
[CrossRef] [PubMed]

Chaves, T.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Chen, J.-H.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

Chen, M. H.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Chen, N.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[CrossRef] [PubMed]

Chen, N. G.

M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl Opt 42, 4102–4114 (2003).
[CrossRef] [PubMed]

Chiou, G.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

Choe, R.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
[CrossRef] [PubMed]

Chorlton, M.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Chu, Y.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

Chung, S. H.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

Cohen, G.

G. Cohen, “Contrast-detail-dose analysis of six different computed tomographic scanners,” J. Comput. Assis. Tomogr. 3, 197–203 (1979).
[CrossRef]

Comelli, D.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J Biomed Opt 14, 054,030 (2009).
[CrossRef]

Conant, E. F.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

Constable, R. T.

R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging,” J. Comput. Assis. Tomogr. 15, 297–303 (1991).
[CrossRef]

Corlu, A.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
[CrossRef] [PubMed]

Cronin, E. B.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[CrossRef] [PubMed]

Cubeddu, R.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J Biomed Opt 14, 054,030 (2009).
[CrossRef]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys Med Biol 50, 2489–2502 (2005).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem Photobiol 72, 383–391 (2000).
[PubMed]

Culver, J. P.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt Lett 29, 256–258 (2004). 0146-9592 Journal Article.
[CrossRef] [PubMed]

Currier, A. A.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[CrossRef] [PubMed]

Czerniecki, B. J.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

D’Andrea, C.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem Photobiol 72, 383–391 (2000).
[PubMed]

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys Med Biol 50, 2489–2502 (2005).
[CrossRef] [PubMed]

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

Davis, S. C.

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J Biomed Opt 11, 33,001 (2006).
[CrossRef]

DeAngelis, G. A.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

DeBruhl, N.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Dehghani, H.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation,” Optics Express 16, 17,484–17,504 (2008).
[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt Express 15, 8043–8058 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J Biomed Opt 11, 33,001 (2006).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl Opt 44, 1858–1869 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl Opt 42, 3117–3128 (2003).
[CrossRef] [PubMed]

Delivoria-Papadopoulos, M.

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,” Anesthesiology 77, 656–661 (1992).
[CrossRef] [PubMed]

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med Phys 20, 299–309 (1993).
[CrossRef] [PubMed]

Demichele, A.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

Deng, C.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

Djeziri, S.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Dorn, O.

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532 (2006).
[CrossRef]

Doyley, M.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

Durduran, T.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
[CrossRef] [PubMed]

Durkin, A. J.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Fang, Q.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans on Med Imaging 27, 752–765 (2008).
[CrossRef]

Farina, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J Biomed Opt 14, 054,030 (2009).
[CrossRef]

Faulkner, K.

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

Feig, B. A.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

Fleiszer, P.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Forero, J. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

Fraker, D. L.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

Franceschini, M. A.

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Applied Optics 45, 8142–8151 (2006).
[CrossRef] [PubMed]

Gatsonis, C. A.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Gerety, E. D.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl Opt 38, 5480–5490 (1999).
[CrossRef]

Gibson, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

Grosenick, D.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys Med Biol 50, 2451–2468 (2005).
[CrossRef] [PubMed]

Gulsen, G.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information,” Physics in Medicine and Biology 50, 2837–2858 (2005).
[CrossRef] [PubMed]

Hall, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Harms, S.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Hebden, J. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

Henkelman, R. M.

R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging,” J. Comput. Assis. Tomogr. 15, 297–303 (1991).
[CrossRef]

Heywang-Köbrunner, S. H.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Hillman, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

Hillman, E. M.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
[CrossRef] [PubMed]

Hillman, E. M. C.

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med Phys 20, 299–309 (1993).
[CrossRef] [PubMed]

Hornung, R.

M. C. Stahel, M. Wolf, A. Baños, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles,” Lasers Med Sci 24, 901–907 (2009).
[CrossRef] [PubMed]

Hsiang, D.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” Journal of Biomed Opt 9, 534–540 (2004).
[CrossRef]

Hsiang, D. J.-B.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

Huang, M.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[CrossRef] [PubMed]

M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl Opt 42, 4102–4114 (2003).
[CrossRef] [PubMed]

Huppert, T. J.

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Applied Optics 45, 8142–8151 (2006).
[CrossRef] [PubMed]

Hwang, E.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

Hylton, N.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Ichalalene, Z.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Intes, X.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information,” Physics in Medicine and Biology 50, 2837–2858 (2005).
[CrossRef] [PubMed]

Isaacson, D.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans on Med Imaging 27, 752–765 (2008).
[CrossRef]

Jacques, S. L.

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics,” IEEE trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Jakubowski, D.

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” Journal of Biomed Opt 9, 534–540 (2004).
[CrossRef]

Jiang, H.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” Journal Biomed Opt 13, 044,006 (2008).

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med Phys 22, 691–701 (1995).
[CrossRef] [PubMed]

Jiang, S.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt Express 15, 8043–8058 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl Opt 44, 1858–1869 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

Joseph, D. K.

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Applied Optics 45, 8142–8151 (2006).
[CrossRef] [PubMed]

Kaufman, P. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

Kilmer, M. E.

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Klifa, C.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

Klose, A. D.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Knight, J. A.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity,” Med Phys 37, 419–426 (2010).
[CrossRef] [PubMed]

Kogel, C.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

Kogel, C. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

Kolehmainen, V.

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532 (2006).
[CrossRef]

Konecky, S. D.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

Kopans, D. B.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Kotre, C. J.

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

Kuhl, C. K.

C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications,” Radiology 244, 672–691 (2007).
[CrossRef] [PubMed]

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Kurth, C. D.

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,” Anesthesiology 77, 656–661 (1992).
[CrossRef] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Lee, K.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

Lehman, C.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Lesage, F.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Li, A.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt Lett 29, 256–258 (2004). 0146-9592 Journal Article.
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Lilge, L.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity,” Med Phys 37, 419–426 (2010).
[CrossRef] [PubMed]

Lopez, H.

S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging,” Med Phys 9, 4–12 (1982).
[CrossRef] [PubMed]

McBride, T. O.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl Opt 38, 5480–5490 (1999).
[CrossRef]

Mehta, R.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
[CrossRef] [PubMed]

Mehta, R. S.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

Merritt, S.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

Merritt, S. I.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

Mesurolle, B.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Miller, E.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans on Med Imaging 27, 752–765 (2008).
[CrossRef]

Miller, E. L.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt Lett 29, 256–258 (2004). 0146-9592 Journal Article.
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Mincu, N.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Moa-Anderson, B.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Moesta, K. T.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys Med Biol 50, 2451–2468 (2005).
[CrossRef] [PubMed]

Moore, R. H.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Mucke, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys Med Biol 50, 2451–2468 (2005).
[CrossRef] [PubMed]

Muffly, L. S.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

Musgrove, C. H.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation,” Optics Express 16, 17,484–17,504 (2008).
[CrossRef]

Nalcioglu, O.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

Netz, U.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Nicolson, S. C.

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,” Anesthesiology 77, 656–661 (1992).
[CrossRef] [PubMed]

Nielsen, T.

B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J Biomed Opt 14, 034,041 (2009).
[CrossRef]

Nioka, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, “Concurrent diffuse optical tomography, spectroscopy and magnetic resonance imaging of Breast Cancer,” Ph.D. thesis, UPenn (2000).

Orel, S. G.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

Osterberg, U. L.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl Opt 38, 5480–5490 (1999).
[CrossRef]

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Pathak, S.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” Journal of Biomed Opt 11, 041,102–116 (2006).

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–168 (1991).
[CrossRef]

Paulsen, K.

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med Phys 34, 4545–4557 (2007).
[CrossRef] [PubMed]

Paulsen, K. D.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt Express 15, 8043–8058 (2007).
[CrossRef] [PubMed]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J Biomed Opt 11, 33,001 (2006).
[CrossRef]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl Opt 44, 1858–1869 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl Opt 42, 3117–3128 (2003).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl Opt 38, 5480–5490 (1999).
[CrossRef]

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt Lett 23, 1716–1718 (1998).
[CrossRef]

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med Phys 22, 691–701 (1995).
[CrossRef] [PubMed]

S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Image-guided near infrared spectroscopy using boundary element method: phantom validation,” in Multimodal Biomedical Imaging IV, vol. 7171, p. 717103 (SPIE, 2009).

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Piao, D.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation,” Optics Express 16, 17,484–17,504 (2008).
[CrossRef]

Pifferi, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J Biomed Opt 14, 054,030 (2009).
[CrossRef]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys Med Biol 50, 2489–2502 (2005).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem Photobiol 72, 383–391 (2000).
[PubMed]

Pisano, E. D.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Pogue, B. W.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt Express 15, 8043–8058 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med Phys 34, 4545–4557 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” Journal of Biomed Opt 11, 041,102–116 (2006).

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J Biomed Opt 11, 33,001 (2006).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl Opt 44, 1858–1869 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl Opt 42, 3117–3128 (2003).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl Opt 38, 5480–5490 (1999).
[CrossRef]

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt Lett 23, 1716–1718 (1998).
[CrossRef]

S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Image-guided near infrared spectroscopy using boundary element method: phantom validation,” in Multimodal Biomedical Imaging IV, vol. 7171, p. 717103 (SPIE, 2009).

Polyzos, M.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Poplack, S. B.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl Opt 38, 5480–5490 (1999).
[CrossRef]

Poplack, S. P.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Putt, M. E.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

Rafferty, E.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

Rinneberg, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys Med Biol 50, 2451–2468 (2005).
[CrossRef] [PubMed]

Robinson, K. J.

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

Rosen, M. A.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

Scheel, A. K.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
[CrossRef] [PubMed]

Schlag, P. M.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys Med Biol 50, 2451–2468 (2005).
[CrossRef] [PubMed]

Schnall, M. D.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Schnitt, S. J.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Schwartz, G. N.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

Schweiger, M.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Physics in Medicine and Biology 44, 2703–2721 (1999).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med Phys 20, 299–309 (1993).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” Journal of Biomed Opt 9, 534–540 (2004).
[CrossRef]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Shudong, J.

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl Opt 42, 3117–3128 (2003).
[CrossRef] [PubMed]

Sikora, J.

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532 (2006).
[CrossRef]

Smazal, S. F.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Smith, S. W.

S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging,” Med Phys 9, 4–12 (1982).
[CrossRef] [PubMed]

Sobel, E. S.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” Journal Biomed Opt 13, 044,006 (2008).

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

Song, X.

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J Biomed Opt 11, 33,001 (2006).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

Spinelli, L.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys Med Biol 50, 2489–2502 (2005).
[CrossRef] [PubMed]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med Phys 34, 4545–4557 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl Opt 44, 1858–1869 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Image-guided near infrared spectroscopy using boundary element method: phantom validation,” in Multimodal Biomedical Imaging IV, vol. 7171, p. 717103 (SPIE, 2009).

Stahel, M. C.

M. C. Stahel, M. Wolf, A. Baños, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles,” Lasers Med Sci 24, 901–907 (2009).
[CrossRef] [PubMed]

Star, W. M.

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics,” IEEE trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Stelling, C. B.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Sterenborg, H.

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics,” IEEE trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Steven, J. M.

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,” Anesthesiology 77, 656–661 (1992).
[CrossRef] [PubMed]

St-Jean, P.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Stott, J.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Stott, J. J.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

Strangman, G.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

Su, M.-Y.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

Sutton, J. P.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Taroni, P.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J Biomed Opt 14, 054,030 (2009).
[CrossRef]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys Med Biol 50, 2489–2502 (2005).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem Photobiol 72, 383–391 (2000).
[PubMed]

Tchou, J.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

Tharmalingam, S.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity,” Med Phys 37, 419–426 (2010).
[CrossRef] [PubMed]

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys Med Biol 50, 2489–2502 (2005).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem Photobiol 72, 383–391 (2000).
[PubMed]

Tosteson, T. D.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

Tromberg, B.

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” Journal of Biomed Opt 9, 534–540 (2004).
[CrossRef]

Tromberg, B. J.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
[CrossRef] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem Photobiol 72, 383–391 (2000).
[PubMed]

van Gemert, M. J. C.

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics,” IEEE trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Vine, H. S.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[CrossRef] [PubMed]

Wabnitz, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys Med Biol 50, 2451–2468 (2005).
[CrossRef] [PubMed]

Wang, J.

J. Wang, “Broadband Near-Infrared Tomography For Breast Cancer Imaging,” Ph.D. thesis, Dart-mouth College (Department of Physics and Astronomy) (2009).

Wang, Y.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

Weatherall, P. T.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Weaver, J.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

Weaver, J. B.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

Wells, W. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Wilson, B. C.

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–168 (1991).
[CrossRef]

Wolf, M.

M. C. Stahel, M. Wolf, A. Baños, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles,” Lasers Med Sci 24, 901–907 (2009).
[CrossRef] [PubMed]

Wong, J.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity,” Med Phys 37, 419–426 (2010).
[CrossRef] [PubMed]

Wu, T.

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Wyman, D. R.

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–168 (1991).
[CrossRef]

Xie, T.

M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl Opt 42, 4102–4114 (2003).
[CrossRef] [PubMed]

Xu, C.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[CrossRef] [PubMed]

Xu, G.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation,” Optics Express 16, 17,484–17,504 (2008).
[CrossRef]

Yalavarthy, P. K.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt Express 15, 8043–8058 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med Phys 34, 4545–4557 (2007).
[CrossRef] [PubMed]

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

Yazici, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information,” Physics in Medicine and Biology 50, 2837–2858 (2005).
[CrossRef] [PubMed]

Yodh, A. G.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
[CrossRef] [PubMed]

Yuan, Z.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” Journal Biomed Opt 13, 044,006 (2008).

Zacharopoulos, A. D.

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532 (2006).
[CrossRef]

Zhang, J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

Zhang, Q.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” Journal Biomed Opt 13, 044,006 (2008).

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
[CrossRef] [PubMed]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt Lett 29, 256–258 (2004). 0146-9592 Journal Article.
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

Zhang, Y.

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

Zhu, Q.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[CrossRef] [PubMed]

M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl Opt 42, 4102–4114 (2003).
[CrossRef] [PubMed]

Acad Radiol (1)

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad Radiol 12, 925–933 (2005).
[CrossRef] [PubMed]

Acad. Radiology (1)

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results,” Acad. Radiology 12, 934–947 (2005).
[CrossRef]

Anesthesiology (1)

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,” Anesthesiology 77, 656–661 (1992).
[CrossRef] [PubMed]

Ann Surg (1)

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer,” Ann Surg 249, 448–454 (2009).
[CrossRef] [PubMed]

Appl Opt (7)

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl Opt 44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl Opt 44, 1948–1956 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust reconstruction,” Appl Opt 44, 1858–1869 (2005).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl Opt 42, 5181–5190 (2003).
[CrossRef] [PubMed]

M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl Opt 42, 4102–4114 (2003).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl Opt 38, 5480–5490 (1999).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl Opt 42, 3117–3128 (2003).
[CrossRef] [PubMed]

Applied Optics (1)

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Applied Optics 45, 8142–8151 (2006).
[CrossRef] [PubMed]

Biol. Psychiatry (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

Br. J. Radiol. (1)

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

IEEE Trans on Med Imaging (1)

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography,” IEEE Trans on Med Imaging 27, 752–765 (2008).
[CrossRef]

IEEE trans. Biomed. Eng. (1)

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics,” IEEE trans. Biomed. Eng. 36, 1146–1154 (1989).
[CrossRef] [PubMed]

Inverse Problems (2)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems 15, R41–R93 (1999). APR INVERSE PROBL.
[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Problems 22, 1509–1532 (2006).
[CrossRef]

J Biomed Opt (6)

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J Biomed Opt 11, 33,001 (2006).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J Biomed Opt 9, 541–552 (2004).
[CrossRef] [PubMed]

B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J Biomed Opt 14, 034,041 (2009).
[CrossRef]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J Biomed Opt 14, 054,030 (2009).
[CrossRef]

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J Biomed Opt 10, 024,033 (2005).
[CrossRef]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J Biomed Opt 14, 024,020 (2009).
[CrossRef]

J. Comput. Assis. Tomogr. (2)

R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging,” J. Comput. Assis. Tomogr. 15, 297–303 (1991).
[CrossRef]

G. Cohen, “Contrast-detail-dose analysis of six different computed tomographic scanners,” J. Comput. Assis. Tomogr. 3, 197–203 (1979).
[CrossRef]

JAMA (1)

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-Köbrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy,” JAMA 292, 2735–2742 (2004).
[CrossRef] [PubMed]

Journal Biomed Opt (1)

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” Journal Biomed Opt 13, 044,006 (2008).

Journal of Biomed Opt (2)

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue,” Journal of Biomed Opt 9, 534–540 (2004).
[CrossRef]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” Journal of Biomed Opt 11, 041,102–116 (2006).

Lasers in Medical Science (1)

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers in Medical Science 6, 155–168 (1991).
[CrossRef]

Lasers Med Sci (1)

M. C. Stahel, M. Wolf, A. Baños, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles,” Lasers Med Sci 24, 901–907 (2009).
[CrossRef] [PubMed]

Med Phys (5)

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity,” Med Phys 37, 419–426 (2010).
[CrossRef] [PubMed]

S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging,” Med Phys 9, 4–12 (1982).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med Phys 20, 299–309 (1993).
[CrossRef] [PubMed]

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med Phys 22, 691–701 (1995).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med Phys 34, 4545–4557 (2007).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Opt Express (1)

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt Express 15, 8043–8058 (2007).
[CrossRef] [PubMed]

Opt Lett (3)

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt Lett 28, 2339–2341 (2003).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt Lett 29, 256–258 (2004). 0146-9592 Journal Article.
[CrossRef] [PubMed]

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt Lett 23, 1716–1718 (1998).
[CrossRef]

Optics Express (1)

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation,” Optics Express 16, 17,484–17,504 (2008).
[CrossRef]

Photochem Photobiol (1)

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem Photobiol 72, 383–391 (2000).
[PubMed]

Phys Med Biol (5)

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy,” Phys Med Biol 53, 6713–6727 (2008).
[CrossRef] [PubMed]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys Med Biol 49, 1147–1163 (2004).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys Med Biol 50, 2451–2468 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys Med Biol 50, 3941–3956 (2005).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography,” Phys Med Biol 50, 2489–2502 (2005).
[CrossRef] [PubMed]

Physics in Medicine and Biology (2)

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Physics in Medicine and Biology 44, 2703–2721 (1999).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information,” Physics in Medicine and Biology 50, 2837–2858 (2005).
[CrossRef] [PubMed]

Proc Natl Acad Sci U S A (3)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc Natl Acad Sci U S A 104, 4014–4019 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc Natl Acad Sci U S A 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc Natl Acad Sci U S A 100, 12,349–12,354 (2003).
[CrossRef]

Radiology (4)

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction,” Radiology 237, 57–66 (2005).
[CrossRef] [PubMed]

C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications,” Radiology 244, 672–691 (2007).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes,” Radiology 252, 551–560 (2009).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Review of Scientific Instruments (1)

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Review of Scientific Instruments 75, 5262–5270 (2004).
[CrossRef]

Technol Cancer Res Treat (1)

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol Cancer Res Treat 2, 563–569 (2003).
[PubMed]

Technology in Cancer Research and Treatment (1)

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction,” Technology in Cancer Research and Treatment 4, 513–526 (2005).
[PubMed]

Other (5)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res Treat: Review (2007).

V. Ntziachristos, “Concurrent diffuse optical tomography, spectroscopy and magnetic resonance imaging of Breast Cancer,” Ph.D. thesis, UPenn (2000).

J. Wang, “Broadband Near-Infrared Tomography For Breast Cancer Imaging,” Ph.D. thesis, Dart-mouth College (Department of Physics and Astronomy) (2009).

“Mimics Software,” http://materialise.com/mimics.

S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Image-guided near infrared spectroscopy using boundary element method: phantom validation,” in Multimodal Biomedical Imaging IV, vol. 7171, p. 717103 (SPIE, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

In (a) the MR image of a breast phantom is used to generate the surface of breast shown in (b), which is a 3D rendering of the mesh with inclusion and the position of source/detectors in red dots.

Fig. 2.
Fig. 2.

Percent error plots (color bar shows error values) are shown for the range of sizes (x-axis) and contrasts (y-axis). Each plot represents the error in recovering an expected value of a different chromophore based on varying sizes (x-axis) and contrasts (y-axis): (a) HbO, (b) Hb, (c) HbT, (d) Contrast Ratio. The results are for non-spherical inclusions with no water contrast.

Fig. 3.
Fig. 3.

Percent error plots (color bar shows error values) are shown for the range of sizes (x-axis) and contrasts (y-axis). Each plot represents the error in recovering an expected value of a different chromophore based on varying sizes (x-axis) and contrasts (y-axis): (a) HbO, (b) Hb, (c) HbT, (d) Contrast Ratio. The results are for non-spherical inclusions with water contrast.

Fig. 4.
Fig. 4.

Percent error plots (color bar shows error values) are shown for the range of sizes (x-axis) and contrasts (y-axis). Each plot represents the error in recovering an expected value of a different chromophore based on varying sizes (x-axis) and contrasts (y-axis): (a) HbO, (b) Hb, (c) HbT, (d) Contrast Ratio. The results are for spherical inclusions (with water contrast) whose sizes were smaller than that of non-spherical inclusions shown in Figures 2 and 3.

Fig. 5.
Fig. 5.

(a) Different heights from the MR image of the the breast phantom (17, 25, 35, 45, 55, 65 and 74mm) were used to create various sizes for the 3D breast mesh to study the effect of trimmed meshes. (b) Using the full breast mesh as the reference, the change in light fluence of the trimmed meshes (shown in (a)) at the detector locations is shown here. Horizontal axis is the distance between source/detector pairs and vertical axis is the light fluence difference between full mesh (I 0) and partial mesh (I). For clarity not all trimmed sizes are shown. The height of the full breast mesh was 79mm.

Fig. 6.
Fig. 6.

Percent error plots (color bar shows error values) are shown for the range of sizes (x-axis) and contrasts (y-axis). Each plot represents the error in recovering an expected value of a different chromophore based on varying sizes (x-axis) and contrasts (y-axis): (a) HbO, (b) Hb, (c) HbT, (d) Contrast Ratio. The results are for spherical inclusions (with water contrast) using partial volume type reconstruction with reduced volume for breast mesh as shown in Figure 5(a).

Fig. 7.
Fig. 7.

(a) Reconstructed estimates of HbO, Hb and HbT concentration are shown for a simulated inclusion with an equivalent diameter of 19.2mm. The resolution of the inclusion mesh was doubled. The difference in HbT was less than 2% using different mesh resolutions. The numbers shown on top of each set of bars are the % error of the medium resolution relative to the fine resolution. Refer to Table 4 for mesh information. (b) Using a relatively coarser mesh for the breast model not only produces accurate chromophore values but also it reduces computational time relative to normal breast mesh. The numbers shown on top of each set of bars are the % error of each chromophore of the coarse breast mesh relative to normal breast mesh. Refer to Table 5 for the mesh information used here.

Tables (5)

Tables Icon

Table 1. Size and mesh properties of non-spherical inclusions used in the simulations. Equivalent diameters is diameter of a sphere that would contain the same volume as the inclusion.

Tables Icon

Table 2. Size and mesh properties of spherical inclusions used in the simulations and contrast-detail plots.

Tables Icon

Table 3. Level of oxy-hemoglobin (HbO), deoxy-hemoglobin (Hb) and HbT in different simulated contrast ratios (µM)

Tables Icon

Table 4. Number of nodes used in different mesh resolution for “size 3” inclusion.

Tables Icon

Table 5. Better computational performance is achieved by choosing the mesh as described in section 3.3. The simulations were run on a computer with 32 GB of memory and an AMD Opteron CPU @ 2.7GHz with Linux as operating system.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

· D ( r ) Φ ( r , ω ) + ( μ a ( r ) + i ω c ) Φ ( r , ω ) = q 0 ( r , ω )
exp ( λ · r ) 4 π · D · r
λ = μ a + i ω c D

Metrics