Abstract

A multi-layered nanoparticles optical disk has been developed for a jitter-free high-density data storage system. The disk has nano structures composed of 300-nm-diameter photosensitive particles and 30-nm-width non-photosensitive buffer rings around them. With the buffer rings into the nanoparticles disk, a conventional confocal microscope equipped with a low numerical aperture (NA) objective picked up a particle’s shape signal to generate a synchronous signal on its own. In the three-dimensional structured disk proposed, no electronically-produced reference signal is necessary for clock data recover (CDR); no jitter occurs in data decoding.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Microholographic multilayer optical disk data storage

Robert R. McLeod, Andrew J. Daiber, Mark E. McDonald, Timothy L. Robertson, Timothy Slagle, Sergei L. Sochava, and Lambertus Hesselink
Appl. Opt. 44(16) 3197-3207 (2005)

Spectrally coded optical data storage by metal nanoparticles

H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg
Opt. Lett. 25(8) 563-565 (2000)

Three-dimensional optical disk data storage via the localized alteration of a format hologram

R. R. McLeod, A. J. Daiber, T. Honda, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink
Appl. Opt. 47(14) 2696-2707 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
    [Crossref]
  2. M. Hatakeyama, T. Ando, K. Tsujita, and I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
    [Crossref]
  3. S. Alasfar, M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Polarization-multiplexed optical memory with Urethane-Urea copolymers,” Appl. Opt. 38(29), 6201–6204 (1999).
    [Crossref]
  4. B. Yao, M. Lei, L. Ren, N. Menke, Y. Wang, T. Fischer, and N. Hampp, “Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films,” Opt. Lett. 30(22), 3060–3062 (2005).
    [Crossref] [PubMed]
  5. E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk” Opt. Exp. 19, 12264–12276 (2007), http//www.opticsexpress.org/abstract.cfm?URI=OPEX-15-19-12264 .
  6. I. Polyzos, G. Tsigaridas, M. Fakis, V. Giannetas, and P. Persephonis, “Three-photon induced photobleaching in a three-dimensional memory material,” Opt. Lett. 30(19), 2654–2656 (2005).
    [Crossref] [PubMed]
  7. N. Kobayashi and C. Egami, “High-resolution optical storage by use of minute spheres,” Opt. Lett. 30(3), 299–301 (2005).
    [Crossref] [PubMed]
  8. R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
    [Crossref]

2010 (1)

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

2005 (3)

2000 (1)

M. Hatakeyama, T. Ando, K. Tsujita, and I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[Crossref]

1999 (1)

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Alasfar, S.

Ando, T.

M. Hatakeyama, T. Ando, K. Tsujita, and I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[Crossref]

Barillé, R.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

Egami, C.

Fakis, M.

Fischer, T.

Giannetas, V.

Hampp, N.

Hatakeyama, M.

M. Hatakeyama, T. Ando, K. Tsujita, and I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[Crossref]

Ishikawa, M.

Kawata, Y.

Kino, G. S.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Kobayashi, N.

Kucharski, S.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

Lei, M.

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Menke, N.

Nunzi, J.-M.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

Okamoto, N.

Ortyl, E.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

Persephonis, P.

Polyzos, I.

Ren, L.

Sugihara, O.

Tajalli, P.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

Tsigaridas, G.

Tsuchimori, M.

Tsujita, K.

M. Hatakeyama, T. Ando, K. Tsujita, and I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[Crossref]

Ueno, I.

M. Hatakeyama, T. Ando, K. Tsujita, and I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[Crossref]

Wang, Y.

Watanabe, O.

Yao, B.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Hatakeyama, T. Ando, K. Tsujita, and I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[Crossref]

Opt. Lett. (3)

Other (1)

E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk” Opt. Exp. 19, 12264–12276 (2007), http//www.opticsexpress.org/abstract.cfm?URI=OPEX-15-19-12264 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Process to prepare the nanoparticles disk with buffer rings.

Fig. 2
Fig. 2

Optical setup for reflection type confocal laser scanning microscopy: BS1, BS2, BS3, beam splitters; L1, L2 spherical lenses; PD, photo detector.

Fig. 3
Fig. 3

Profile of normalized confocal reflection signal along an optical axis.

Fig. 4
Fig. 4

AFM micrographs of nanoparticle’s disk: (a) with no buffer ring, (b) with buffer rings.

Fig. 5
Fig. 5

Bird’s-eye view of AFM micrograph of the nanoparticle’s disk with the buffer rings.

Fig. 6
Fig. 6

Cofocal image of the first disk layer.

Fig. 7
Fig. 7

(a) Confocal reflection signal, or particle’s shape signal. (b) non-periodic binary clocksignal from the shape signal.

Fig. 8
Fig. 8

Cross-sectional confocal image of the multi-layer stacked nanoparticles disk with the buffer rings.

Metrics