Abstract

A multi-layered nanoparticles optical disk has been developed for a jitter-free high-density data storage system. The disk has nano structures composed of 300-nm-diameter photosensitive particles and 30-nm-width non-photosensitive buffer rings around them. With the buffer rings into the nanoparticles disk, a conventional confocal microscope equipped with a low numerical aperture (NA) objective picked up a particle’s shape signal to generate a synchronous signal on its own. In the three-dimensional structured disk proposed, no electronically-produced reference signal is necessary for clock data recover (CDR); no jitter occurs in data decoding.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
    [CrossRef]
  2. M. Hatakeyama, T. Ando, K. Tsujita, I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
    [CrossRef]
  3. S. Alasfar, M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe, “Polarization-multiplexed optical memory with Urethane-Urea copolymers,” Appl. Opt. 38(29), 6201–6204 (1999).
    [CrossRef]
  4. B. Yao, M. Lei, L. Ren, N. Menke, Y. Wang, T. Fischer, N. Hampp, “Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films,” Opt. Lett. 30(22), 3060–3062 (2005).
    [CrossRef] [PubMed]
  5. E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk” Opt. Exp. 19, 12264–12276 (2007), http//www.opticsexpress.org/abstract.cfm?URI=OPEX-15-19-12264 .
  6. I. Polyzos, G. Tsigaridas, M. Fakis, V. Giannetas, P. Persephonis, “Three-photon induced photobleaching in a three-dimensional memory material,” Opt. Lett. 30(19), 2654–2656 (2005).
    [CrossRef] [PubMed]
  7. N. Kobayashi, C. Egami, “High-resolution optical storage by use of minute spheres,” Opt. Lett. 30(3), 299–301 (2005).
    [CrossRef] [PubMed]
  8. R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
    [CrossRef]

2010 (1)

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[CrossRef]

2005 (3)

2000 (1)

M. Hatakeyama, T. Ando, K. Tsujita, I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[CrossRef]

1999 (1)

1990 (1)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

Alasfar, S.

Ando, T.

M. Hatakeyama, T. Ando, K. Tsujita, I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[CrossRef]

Barillé, R.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[CrossRef]

Egami, C.

Fakis, M.

Fischer, T.

Giannetas, V.

Hampp, N.

Hatakeyama, M.

M. Hatakeyama, T. Ando, K. Tsujita, I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[CrossRef]

Ishikawa, M.

Kawata, Y.

Kino, G. S.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

Kobayashi, N.

Kucharski, S.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[CrossRef]

Lei, M.

Mansfield, S. M.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

Menke, N.

Nunzi, J.-M.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[CrossRef]

Okamoto, N.

Ortyl, E.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[CrossRef]

Persephonis, P.

Polyzos, I.

Ren, L.

Sugihara, O.

Tajalli, P.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[CrossRef]

Tsigaridas, G.

Tsuchimori, M.

Tsujita, K.

M. Hatakeyama, T. Ando, K. Tsujita, I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[CrossRef]

Ueno, I.

M. Hatakeyama, T. Ando, K. Tsujita, I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[CrossRef]

Wang, Y.

Watanabe, O.

Yao, B.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[CrossRef]

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, J.-M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Hatakeyama, T. Ando, K. Tsujita, I. Ueno, “Super-Resolution Rewritable Optical Disk Having a Mask Layer Composed of Thermo-Chromic Organic Dye,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 752–755 (2000).
[CrossRef]

Opt. Lett. (3)

Other (1)

E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk” Opt. Exp. 19, 12264–12276 (2007), http//www.opticsexpress.org/abstract.cfm?URI=OPEX-15-19-12264 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Process to prepare the nanoparticles disk with buffer rings.

Fig. 2
Fig. 2

Optical setup for reflection type confocal laser scanning microscopy: BS1, BS2, BS3, beam splitters; L1, L2 spherical lenses; PD, photo detector.

Fig. 3
Fig. 3

Profile of normalized confocal reflection signal along an optical axis.

Fig. 4
Fig. 4

AFM micrographs of nanoparticle’s disk: (a) with no buffer ring, (b) with buffer rings.

Fig. 5
Fig. 5

Bird’s-eye view of AFM micrograph of the nanoparticle’s disk with the buffer rings.

Fig. 6
Fig. 6

Cofocal image of the first disk layer.

Fig. 7
Fig. 7

(a) Confocal reflection signal, or particle’s shape signal. (b) non-periodic binary clocksignal from the shape signal.

Fig. 8
Fig. 8

Cross-sectional confocal image of the multi-layer stacked nanoparticles disk with the buffer rings.

Metrics