Abstract

A compact Bragg grating with embedded gapped metallic nano-structures is proposed and investigated theoretically. The Bragg grating consists of periodic planar metallic strips embedded in a dielectric waveguide. The grating exhibits distinct polarization characteristics due to its underlying working mechanisms of the metallic nano-strips. The grating can be considered as insulator-metal-insulator surface plasmonic polariton waveguide grating with improved light confinement for TM polarized waves. For the TE waves, significant field mismatch between metal and non-metal sections of the grating results in strong reflection. Comparison with the conventional deeply-etched grating on the same waveguide structures reveals interesting characteristics. It is concluded that the two types of grating structures share similar guidance, reflection and loss mechanisms for the TE modes. The spectral characteristics and their dependences on grating duty cycle are drastically different for the TM modes, mainly due to the SPP effect for the metal. Although the proposed grating performs slightly worse comparing to the deeply-etched grating for TE waves, its fabrication process should be easier since there will be no narrow trench (in sub-microns) deep-etching process (up to a few microns in depth) involved.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  3. M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 1–8 (2002).
    [CrossRef]
  4. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: Comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
    [CrossRef]
  5. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE/OSA J. Lightw. Technol. 23(1), 413–422 (2005).
    [CrossRef]
  6. T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73(4), 1–8 (2006).
    [CrossRef]
  7. J. Mu and W. Huang, “A low-loss surface plasmonic Bragg grating”, IEEE/OSA J, Lightw. Technol. 27(4), 436–439 (2009).
    [CrossRef]
  8. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, ••• (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-23-11318 .
    [CrossRef] [PubMed]
  9. Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
    [CrossRef]
  10. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [CrossRef]
  11. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal-films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [CrossRef]
  12. D. J. Bergman and M. I. Stockman, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 484–503 (2000).
  13. J. Mu and W. P. Huang, “Simulation of three-dimensional waveguide discontinuities by a full-vector mode-matching method based on finite-difference schemes,” Opt. Express 16(22), 18152–18163 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-22-18152 .
    [CrossRef] [PubMed]

2009 (1)

J. Mu and W. Huang, “A low-loss surface plasmonic Bragg grating”, IEEE/OSA J, Lightw. Technol. 27(4), 436–439 (2009).
[CrossRef]

2008 (1)

2007 (1)

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

2006 (3)

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, ••• (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-23-11318 .
[CrossRef] [PubMed]

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73(4), 1–8 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: Comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE/OSA J. Lightw. Technol. 23(1), 413–422 (2005).
[CrossRef]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 1–8 (2002).
[CrossRef]

2000 (1)

D. J. Bergman and M. I. Stockman, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 484–503 (2000).

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal-films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 484–503 (2000).

Berini, P.

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: Comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[CrossRef]

Boltasseva, A.

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73(4), 1–8 (2006).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE/OSA J. Lightw. Technol. 23(1), 413–422 (2005).
[CrossRef]

Bozhevolnyi, S. I.

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73(4), 1–8 (2006).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE/OSA J. Lightw. Technol. 23(1), 413–422 (2005).
[CrossRef]

Brongersma, M. L.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal-films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Catrysse, P. B.

Charbonneau, R.

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: Comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Forsberg, E.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Han, Z. H.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

He, S. L.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Hosseini, A.

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, ••• (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-23-11318 .
[CrossRef] [PubMed]

Huang, W.

J. Mu and W. Huang, “A low-loss surface plasmonic Bragg grating”, IEEE/OSA J, Lightw. Technol. 27(4), 436–439 (2009).
[CrossRef]

Huang, W. P.

Jette-Charbonneau, S.

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: Comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[CrossRef]

Kjaer, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE/OSA J. Lightw. Technol. 23(1), 413–422 (2005).
[CrossRef]

Kretschmann, M.

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 1–8 (2002).
[CrossRef]

Lahoud, N.

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: Comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[CrossRef]

Larsen, M. S.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE/OSA J. Lightw. Technol. 23(1), 413–422 (2005).
[CrossRef]

Leosson, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE/OSA J. Lightw. Technol. 23(1), 413–422 (2005).
[CrossRef]

Maradudin, A. A.

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 1–8 (2002).
[CrossRef]

Massoud, Y.

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, ••• (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-23-11318 .
[CrossRef] [PubMed]

Mattiussi, G. A.

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: Comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[CrossRef]

Mu, J.

Nikolajsen, T.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE/OSA J. Lightw. Technol. 23(1), 413–422 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Selker, M. D.

Sondergaard, T.

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73(4), 1–8 (2006).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal-films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 484–503 (2000).

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal-films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Zia, R.

IEEE J. Quantum Electron. (1)

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: Comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

IEEE/OSA J, Lightw. Technol. (1)

J. Mu and W. Huang, “A low-loss surface plasmonic Bragg grating”, IEEE/OSA J, Lightw. Technol. 27(4), 436–439 (2009).
[CrossRef]

IEEE/OSA J. Lightw. Technol. (1)

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE/OSA J. Lightw. Technol. 23(1), 413–422 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (4)

M. Kretschmann and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 1–8 (2002).
[CrossRef]

T. Sondergaard, S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73(4), 1–8 (2006).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal-films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 484–503 (2000).

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of a Bragg grating with gapped nano-metallic strips.

Fig. 2
Fig. 2

Schematic of a deeply-etched grating.

Fig. 3
Fig. 3

Field patterns of unperturbed and perturbed waveguide sections: (a) TM polarization; (b) TE polarization.

Fig. 4
Fig. 4

Reflection spectra of a 24 µm-long waveguide grating with nano-metallic structure (a) TM (b) TE.

Fig. 6
Fig. 6

Spectral characteristics (TE) as a function of duty cycles for the proposed grating and the deeply-etched grating: (a) peak reflection; (b) loss at the peak reflection wavelength; (c) reflection bandwidth; (d) loss at the reflection half bandwidth.

Fig. 5
Fig. 5

Spectral characteristics (TM) as a function of duty cycles for the proposed grating and the deeply-etched grating: (a) peak reflection; (b) loss at the peak reflection wavelength; (c) reflection bandwidth; (d) loss at the reflection half bandwidth.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Λ unperturbed = ( 1 ζ ) λ 2 Re ( N e f f unperturbed )
Λ perturbed = ζ λ 2 Re ( N e f f perturbed )
E t ( r t , z ) = n = 1 N { a n + e j β n z + a n e + j β n z } e t n ( r t )
H t ( r t , z ) = n = 1 N { a n + e j β n z a n e + j β n z } h t n ( r t )
[ A M + A 0 ] = ( T 0 , M R M , 0 R 0 , M T M , 0 ) [ A 0 + B M ]
T = | T 0 , M | 2
R = | R 0 , M | 2

Metrics