Abstract

We report designs for a silicon-on-insulator (SOI) one-dimensional (1D) photonic crystal (PhC) nanocavity with modulated mode-gap barriers based on the lowest dielectric band. These cavities have an ultrahigh theoretical quality factor (Q) of 107-108 while maintaining a very small modal volume of 0.6-2.0 (λ/n)3, which are the highest Q for any nanocavities with SiO2 under-cladding. We have fabricated these SOI 1D-PhC cavities and confirmed that they exhibited a Q of 3.6×105, which is also the highest measured Q for SOI-type PhC nanocavities. We have also applied the same design to 1D PhC cavities with air claddings, and found that they exhibit a theoretical quality factor higher than 109. The fabricated air-cladding 1D Si PhC cavities have showed a quality factor of 7.2×105, which is close to the highest Q value for 1D PhC cavities.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
    [CrossRef]
  2. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
    [CrossRef]
  3. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, “Ultra-High Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15(24), 16090–16096 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16090 .
    [CrossRef] [PubMed]
  4. A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12084 .
    [CrossRef] [PubMed]
  5. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1551 .
    [CrossRef] [PubMed]
  6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1202 .
    [CrossRef] [PubMed]
  7. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  8. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [CrossRef]
  9. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11095 .
    [CrossRef] [PubMed]
  10. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [CrossRef]
  11. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
    [CrossRef] [PubMed]
  12. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21108 .
    [CrossRef] [PubMed]
  13. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
    [CrossRef]
  14. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
    [CrossRef] [PubMed]
  15. C. A. Barrious, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18(22), 2419–2421 (2006).
    [CrossRef]
  16. C. Lee and J. Thillaigovindan, “Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator,” Appl. Opt. 48(10), 1797–1803 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-10-1797 .
    [CrossRef] [PubMed]
  17. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8174 .
    [CrossRef] [PubMed]
  18. T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
    [CrossRef]
  19. Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
    [CrossRef]
  20. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
    [CrossRef]
  21. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
    [CrossRef]
  22. M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18657 .
    [CrossRef]
  23. E. Kuramochi, T. Tanabe, H. Taniyama, K. Kawasaki, and M. Notomi, “Ultrahigh-Q silicon-on-insulator one dimensional mode-gap nanocavity,” in The Conference on Lasers and Electro-Optics and The Quantum Electronics and Laser Science Conference (CLEO/QELS:2010), Optical Society of America, Washington, DC, USA, 2010, paper CWB2.
  24. Q. Quan, P. B. Deotare, and M. Lončar, “Deterministic design of ultrahigh Q and small mode volume photonic crystal nanobeam cavity,” in The Conference on Lasers and Electro-Optics and The Quantum Electronics and Laser Science Conference (CLEO/QELS:2010), Optical Society of America, Washington, DC, USA, 2010, paper CWB5.
  25. Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [CrossRef]
  26. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7826 .
    [CrossRef] [PubMed]
  27. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities,” Adv. Opt. Technol. (2008), 568936 (2008).
  28. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-3-1623 .
    [CrossRef] [PubMed]
  29. C. E. Png and S. T. Lim, “Silicon optical nanocavities for multiple sensing,” J. Lightwave Technol. 26(11), 1524–1531 (2008).
    [CrossRef]

2010 (1)

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

2009 (7)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21108 .
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[CrossRef] [PubMed]

C. Lee and J. Thillaigovindan, “Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator,” Appl. Opt. 48(10), 1797–1803 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-10-1797 .
[CrossRef] [PubMed]

T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

2008 (8)

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8174 .
[CrossRef] [PubMed]

A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12084 .
[CrossRef] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities,” Adv. Opt. Technol. (2008), 568936 (2008).

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-3-1623 .
[CrossRef] [PubMed]

C. E. Png and S. T. Lim, “Silicon optical nanocavities for multiple sensing,” J. Lightwave Technol. 26(11), 1524–1531 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11095 .
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18657 .
[CrossRef]

2007 (2)

2006 (3)

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

C. A. Barrious, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18(22), 2419–2421 (2006).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

2005 (2)

2004 (2)

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1551 .
[CrossRef] [PubMed]

Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

2002 (1)

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

1997 (1)

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Akahane, Y.

Asano, T.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1202 .
[CrossRef] [PubMed]

Baba, T.

Barrious, C. A.

C. A. Barrious, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18(22), 2419–2421 (2006).
[CrossRef]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[CrossRef] [PubMed]

Chan, J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Charvolin, T.

Chen, Y.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

De La Rue, R. M.

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[CrossRef] [PubMed]

Erickson, D.

Fan, S.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Ferrera, J.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Foresi, J. S.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Hadji, E.

Haret, L.-D.

Hatsuta, R.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

Ho, W.-D.

T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Hsiao, Y.-H.

T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Ippen, E. P.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Joannopoulos, J. D.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Johnson, N. P.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Kimerling, L. C.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Kita, S.

Kuramochi, E.

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21108 .
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11095 .
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities,” Adv. Opt. Technol. (2008), 568936 (2008).

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7826 .
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1551 .
[CrossRef] [PubMed]

Lalanne, P.

Lee, C.

Lee, P.-T.

T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Lim, S. T.

Loncar, M.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Lu, T.-W.

T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Mandal, S.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Mitsugi, M.

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Mitsugi, S.

Moll, N.

Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Noda, S.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1202 .
[CrossRef] [PubMed]

Notomi, M.

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21108 .
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11095 .
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18657 .
[CrossRef]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities,” Adv. Opt. Technol. (2008), 568936 (2008).

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7826 .
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1551 .
[CrossRef] [PubMed]

Nozaki, K.

Painter, O.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Peyrade, D.

Picard, E.

Png, C. E.

Quan, Q.

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Rodier, J. C.

Ryu, H.-Y.

Shinya, A.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities,” Adv. Opt. Technol. (2008), 568936 (2008).

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1551 .
[CrossRef] [PubMed]

Silberstein, E.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Smith, H. I.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Song, B. S.

Sorel, M.

Steinmeyer, G.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Talneau, A.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Tanabe, T.

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21108 .
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities,” Adv. Opt. Technol. (2008), 568936 (2008).

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7826 .
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Tanaka, Y.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

Taniyama, H.

Thillaigovindan, J.

Thoen, E. R.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Vahala, K. J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Velha, P.

Villeneuve, P. R.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Zain, A. R.

Adv. Opt. Technol. (1)

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities,” Adv. Opt. Technol. (2008), 568936 (2008).

Appl. Opt. (1)

Appl. Phys. Lett. (8)

T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94(14), 141110 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102 (2009).
[CrossRef]

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. A. Barrious, “Ultrasensitive nanomechanical photonic sensor based on horizontal slot-waveguide resonator,” IEEE Photon. Technol. Lett. 18(22), 2419–2421 (2006).
[CrossRef]

J. Appl. Phys. (1)

Y. A. Vlasov, N. Moll, S. J. McNab, T.-W. Lu, Y.-H. Hsiao, W.-D. Ho, and P.-T. Lee, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95(9), 4538–4544 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nature (3)

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Opt. Express (10)

L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21108 .
[CrossRef] [PubMed]

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-8174 .
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11095 .
[CrossRef] [PubMed]

P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, “Ultra-High Q/V Fabry-Perot microcavity on SOI substrate,” Opt. Express 15(24), 16090–16096 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16090 .
[CrossRef] [PubMed]

A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12084 .
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1551 .
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1202 .
[CrossRef] [PubMed]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18657 .
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities,” Opt. Express 15(12), 7826–7839 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7826 .
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-3-1623 .
[CrossRef] [PubMed]

Other (2)

E. Kuramochi, T. Tanabe, H. Taniyama, K. Kawasaki, and M. Notomi, “Ultrahigh-Q silicon-on-insulator one dimensional mode-gap nanocavity,” in The Conference on Lasers and Electro-Optics and The Quantum Electronics and Laser Science Conference (CLEO/QELS:2010), Optical Society of America, Washington, DC, USA, 2010, paper CWB2.

Q. Quan, P. B. Deotare, and M. Lončar, “Deterministic design of ultrahigh Q and small mode volume photonic crystal nanobeam cavity,” in The Conference on Lasers and Electro-Optics and The Quantum Electronics and Laser Science Conference (CLEO/QELS:2010), Optical Society of America, Washington, DC, USA, 2010, paper CWB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 7
Fig. 7

1D Si air-bridge mode-gap cavities studied in this work.

Fig. 1
Fig. 1

1D SOI mode-gap cavities with rectangular holes/stacks studied in this work.

Fig. 2
Fig. 2

Dispersion of the TE modes in the three 1D SOI PhCs obtained by 3D calculation of the R-Soft Bandsolve code. (Left:) rectangular hole ladder (RS), (Center:) rectangular stack (SS), (Right:) circular hole cavity (CS). Red dots correspond to even mode and orange dots do to odd mode. The parameters are as follows; RS/SS: W x(i)=0.45a; CS: r(i)=0.3a, W y=1.35a.

Fig. 3
Fig. 3

Electromagnetic mode distribution profiles of the fundamental resonant mode of the rectangular hole/stack (RS/SS) cavities obtained by 3D FDTD calculation. Lattice constant a=420 nm, for both cavities. xy (H xy) means the distribution in the xy plane. H indicates the power (sum of square of field component for all directions) of the magnetic field.

Fig. 4
Fig. 4

The design and calculated electromagnetic mode distribution profiles (fundamental resonant mode) of the SOI circular hole ladder cavity (CS). The parameters are as follows; a=400 nm, m=21, r min=0.22a, W y=1.35a; RS: a=420 nm, SS: a=420 nm.

Fig. 5
Fig. 5

Q, λ c, and V of the fundamental resonant mode of the circular hole cavities as a function of m calculated by the FDTD (a=400 nm, r min=0.22a). (a) SOI cavity (CS); (b) air-bridge cavity (CA).

Fig. 6
Fig. 6

(a) SEM images of the fabricated 1D SOI cavity samples. (b) Transmission spectrum of the fundamental resonant mode of the 1D SOI cavity samples. Linewidth (full width at half maximum: FWHM) was determined by Lorentz fitting (blue line). The lower right graph shows the Q L dependence on the cavity width W y .

Fig. 8
Fig. 8

(a) SEM images of the fabricated Si air-bridge ladder cavity samples. (b) Transmission spectrum of the fundamental resonant mode of the air-bridge ladder cavity samples. (c) Plot of the experimental Q of the circular hole ladder cavities (CS: SOI, CA: air-bridge) as a function of the cavity width W y.

Metrics