Abstract

A theoretical model based on the ray-transfer-matrix method is developed for explaining the principle of a graded-index multimode fiber (GI-MMF) based hybrid fiber Fabry-Perot (GI-FFP) sensor. It is verified by the numerical simulations and experimental results that the high fringe contrast of the reflective spectrum of the sensor is due to the periodic self-focusing effect of the GI-MMF. The influence of the GI-MMF length on the shape of reflective spectrum and corresponding maximum fringe contrast are investigated. Experimental results are in good agreement with the theory. A typical GI-FFP sensor is fabricated and its response to the external refractive index is measured with a maximum sensitivity of ~160 dB/RIU (Refractive Index Unit).

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [CrossRef] [PubMed]
  3. A. Kapoor and E. K. Sharma, “Long period grating refractive-index sensor: optimal design for single wavelength interrogation,” Appl. Opt. 48(31), G88–G94 (2009).
    [CrossRef] [PubMed]
  4. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  5. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  6. Z. Ran, Y. J. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interferometer tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
    [CrossRef]
  7. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [CrossRef] [PubMed]
  8. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  9. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [CrossRef] [PubMed]
  10. L. Mosquera, D. Sáez-Rodriguez, J. L. Cruz, and M. V. Andrés, “In-fiber Fabry-Perot refractometer assisted by a long-period grating,” Opt. Lett. 35(4), 613–615 (2010).
    [CrossRef] [PubMed]
  11. Y. Lu, W. P. Huang, and S. S. Jian, “Influence of mode loss on the feasibility of grating-assisted optical fiber surface plasmon resonance refractive index sensors,” J. Lightwave Technol. 27(21), 4804–4808 (2009).
    [CrossRef]
  12. W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 5(9), 1156–1164 (1987).
    [CrossRef]

2010

2009

2008

2005

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1996

1987

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 5(9), 1156–1164 (1987).
[CrossRef]

Andrés, M. V.

Bhatia, V.

Chiang, K. S.

Choi, H. Y.

Cruz, J. L.

Eggleton, B. J.

Emkey, W. L.

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 5(9), 1156–1164 (1987).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Han, Y.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Huang, W. P.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Jack, C. A.

W. L. Emkey and C. A. Jack, “Analysis and evaluation of graded-index fiber-lenses,” J. Lightwave Technol. 5(9), 1156–1164 (1987).
[CrossRef]

Jian, S. S.

Kapoor, A.

Kuhlmey, B. T.

Lee, B. H.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Li, Y.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Liao, X.

Liu, W. J.

Liu, Z.

Lu, Y.

Mosquera, L.

Mudhana, G.

Paek, U. C.

Park, K. S.

Ran, Z.

Ran, Z. L.

Rao, Y. J.

Sáez-Rodriguez, D.

Sharma, E. K.

Tsai, H. L.

Vengsarkar, A. M.

Wei, T.

Wu, D. K. C.

Xiao, H.

Xu, B.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Zhang, J.

Appl. Opt.

Appl. Phys. Lett.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Sens. Actuators B Chem.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Beam propagation in the hybrid GI-FFP cavity; (b) schematic diagram of the three-beam interference model and (c) the microscopic image of the GI-FFP sensor.

Fig. 2
Fig. 2

(a) Beam radius at the GI-MMF end and R I I I , and (b) the maximum fringe contrast of the reflective spectra of the GI-FFP sensors in air (dots) and calculated R I I I e f f (line), as a function of GI-MMF length.

Fig. 3
Fig. 3

Calculated and experimental reflective spectra of the GI-FFP snesors with GI-MMF length of ~515μm and ~610μm. The reflective spectra from the air gap and the SMF end are also given.

Fig. 4
Fig. 4

The reflective spectra of the sensor in air and deionized water.

Fig. 5
Fig. 5

(a) Refractive index and (b) temperature responses of the GI-FFP sensor. The measurement sensitivity of the refractive index is also given in (a).

Tables (1)

Tables Icon

Table 1 Values of parameters used in the simulations

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 q = 1 ρ i λ n π w 2 .
n ( r ) = n 1 1 g 2 r 2 , r < a .
M 33 ' = [ cos ( 2 g L ) sin ( 2 g L ) / g - g sin ( 2 g L ) cos ( 2 g L ) ] , M 3 ' 2 ' = [ 1 0 ( n 1 n 0 ) / ρ 1 n 0 n 1 / n 0 ] .
I ( λ ) = 0 a s | E I + E I I + E I I I | 2 r d r
V = 10 log ( I max ( λ ) I min ( λ ) ) .
I ( λ ) = R I + R I I e f f + R I I I e f f 2 R I R I I e f f cos Φ I I 2 R I I e f f R I I I e f f cos ( Φ I I I Φ I I ) + 2 R I R I I I e f f cos Φ I I I .
1 R I + R I I e f f R I I I e f f 2 R I R I I e f f 1

Metrics