Abstract

A new, efficient adiabatic in-plane fiber-to-chip coupler design is proposed. In this design, the light from the fiber is coupled into a low-index waveguide with matching mode size. The mode is first adiabatically reduced in size with a rib taper, and then transferred into a high-index (e.g. silicon) waveguide with an inverse taper. The two-stage design allows to reduce the coupler length multiple times in comparison with pure inverse taper-based couplers of similar efficiency. The magnitude of length reduction increases with the refractive index of the low-index waveguide and the fiber mode size.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Orobtchouk, “On Chip Optical Waveguide Interconnect: the Problem of the In/Out Coupling,” in Optical Interconnects: the Silicon Approach, L. Pavesi, G. Guillot, eds. (Springer, 2006).
  2. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
    [CrossRef]
  3. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [CrossRef]
  4. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [CrossRef]
  5. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2927 .
    [CrossRef] [PubMed]
  6. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  7. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
    [CrossRef]
  8. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005).
    [CrossRef] [PubMed]
  9. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [CrossRef]
  10. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  11. B. Wang, J. Jiang, D. M. Chambers, J. Cai, and G. P. Nordin, “Stratified waveguide grating coupler for normal fiber incidence,” Opt. Lett. 30(8), 845–847 (2005).
    [CrossRef] [PubMed]
  12. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
    [CrossRef]
  13. M. Fan, M. Popović, and F. X. Kärtner, “High Directivity, Vertical Fiber-to-Chip Coupler with Anisotropically Radiating Grating Teeth,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper CTuDD3.
  14. I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered Silicon Waveguides for Low Insertion Loss Highly-Efficient High-Speed Electronic Variable Optical Attenuators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2003), paper TuM5.
  15. R. J. Bozeat, S. Day, F. Hopper, F. P. Payne, S. W. Roberts, and M. Asghari, “Silicon Based Waveguides,” in Silicon Photonics, L. Pavesi, D. J. Lockwood, eds. (Springer, 2004).
  16. T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
    [CrossRef]
  17. J. K. Doylend and A. P. Knights, “Design and Simulation of an Integrated Fiber-to-Chip Coupler for Silicon-on-Insulator Waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1363–1370 (2006).
    [CrossRef]
  18. A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Double-Stage Taper for Coupling Between SOI Waveguides and Single-Mode Fiber,” J. Lightwave Technol. 26(24), 3860–3865 (2008).
    [CrossRef]
  19. D. Dai, S. He, and H. Tsang, “Bilevel Mode Converter Between a Silicon Nanowire Waveguide and a Larger Waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
    [CrossRef]
  20. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
    [CrossRef]
  21. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11(26), 3555–3561 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3555 .
    [CrossRef] [PubMed]
  22. M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
    [CrossRef]
  23. C. Manolatou, and H. A. Haus, Passive components for dense optical integration (Kluwer Academic Publishers, 2001), chap. 6.
  24. V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
    [CrossRef]
  25. R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
    [CrossRef]
  26. A. Khilo, M. Popović, and F. X. Kärtner, “Efficient Planar Fiber-to-Chip Coupler based on Two-Stage Adiabatic Evolution,” presented at ICONO/LAT Conference, Minsk, Belarus, 2007, paper IO2/VIII-1.
  27. A. Khilo, and F. X. Kärtner, “Efficient Planar Single-Mode Fiber-to-Chip Coupler based on Two-Stage Adiabatic Evolution,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2010), paper JThE30.
  28. Q. Fang, T.-Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-8-7763 .
    [CrossRef] [PubMed]
  29. M. Qi, M. R. Watts, T. Barwicz, L. Socci, P. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Two-Layer Microphotonic Structures without Planarization,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2005), paper CWD5.
  30. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  31. M. A. Popović, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2006), paper CTuCC1.
  32. FIMMWAVE/FIMMPROP by Photon Design, http://www.photond.com .
  33. C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popović, V. Stojanović, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized Substrate Removal Technique Enabling Strong-Confinement Microphotonics in Bulk Si CMOS Processes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2008), paper CThKK5.
  34. S. Selvaraja, P. Jaenen, W. Bogaerts, D. VanThourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
    [CrossRef]
  35. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
    [CrossRef]
  36. T. Barwicz and H. A. Haus, “Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
    [CrossRef]

2010 (1)

2009 (1)

2008 (1)

2007 (4)

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[CrossRef]

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
[CrossRef]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

2006 (5)

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[CrossRef]

J. K. Doylend and A. P. Knights, “Design and Simulation of an Integrated Fiber-to-Chip Coupler for Silicon-on-Insulator Waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1363–1370 (2006).
[CrossRef]

T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

D. Dai, S. He, and H. Tsang, “Bilevel Mode Converter Between a Silicon Nanowire Waveguide and a Larger Waveguide,” J. Lightwave Technol. 24(6), 2428–2433 (2006).
[CrossRef]

2005 (5)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005).
[CrossRef] [PubMed]

B. Wang, J. Jiang, D. M. Chambers, J. Cai, and G. P. Nordin, “Stratified waveguide grating coupler for normal fiber incidence,” Opt. Lett. 30(8), 845–847 (2005).
[CrossRef] [PubMed]

T. Barwicz and H. A. Haus, “Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
[CrossRef]

2004 (1)

2003 (4)

2002 (2)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

1989 (1)

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Aalto, T.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[CrossRef]

Ackerman, D. A.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Agarwal, A.

R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
[CrossRef]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

Almeida, V. R.

Ayre, M.

Baets, R.

S. Selvaraja, P. Jaenen, W. Bogaerts, D. VanThourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Barkai, A.

Barwicz, T.

Bienstman, P.

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Bogaerts, W.

S. Selvaraja, P. Jaenen, W. Bogaerts, D. VanThourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Bozler, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Cai, J.

Chambers, D. M.

Chang, H.

Cohen, R.

Dai, D.

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Dillon, T.

Doan, M. T.

Doylend, J. K.

J. K. Doylend and A. P. Knights, “Design and Simulation of an Integrated Fiber-to-Chip Coupler for Silicon-on-Insulator Waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1363–1370 (2006).
[CrossRef]

Dumon, P.

S. Selvaraja, P. Jaenen, W. Bogaerts, D. VanThourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

Elek, N.

Fang, Q.

Fijol, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Fike, E.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Frish, M.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Fritze, M.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Gabay, R.

Harjanne, M.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[CrossRef]

Haus, H. A.

He, S.

Heimala, P.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[CrossRef]

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Hoepfner, C.

Hong, C.

R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
[CrossRef]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

Ikedo, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Itabashi,

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Izhaky, N.

Jacobson, S.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Jaenen, P.

Jiang, J.

Jones, R.

Jun-ichi Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Kapulainen, M.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[CrossRef]

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Keast, C.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Keating, P.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Kessler, B.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Kim, D.

Kimerling, L.

R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
[CrossRef]

Kimerling, L. C.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005).
[CrossRef] [PubMed]

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Knecht, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Knights, A. P.

J. K. Doylend and A. P. Knights, “Design and Simulation of an Integrated Fiber-to-Chip Coupler for Silicon-on-Insulator Waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1363–1370 (2006).
[CrossRef]

Krauss, T. F.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Kwong, D.-L.

LeBlanc, J.

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Lee, K. K.

Lim, D. R.

Lin, C.

Liow, T.-Y.

Lipson, M.

Liu, A.

Lo, G. Q.

Malik, B. H.

Manolatou, C.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

McNab, S.

Michel, J.

R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
[CrossRef]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Moll, N.

Montalbo, T.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Murakowski, J.

Nguyen, V.

R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
[CrossRef]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

Nordin, G. P.

Oh, W.-Y.

Ohshima, A.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Pan, D.

Panepucci, R. R.

Paniccia, M.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Prather, D.

Pustai, D.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Roelkens, G.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

Schrauwen, J.

Selvaraja, S.

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Shiraishi, K.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Shoji, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Solehmainen, K.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[CrossRef]

Song, J. F.

Sun, R.

R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
[CrossRef]

Sure, A.

Taillaert, D.

Takahashi, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Tamechika, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Tan, C. W.

Tsai, C. S.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Tsang, H.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Van Laere, F.

Van Thourhout, D.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

VanThourhout, D.

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Vlasov, Y.

Wada, K.

Wang, B.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Yap, K. P.

Yasaitis, J.

R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
[CrossRef]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

Yoda, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

Yu, M. B.

Appl. Phys. Lett. (4)

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91(14), 141120 (2007).
[CrossRef]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[CrossRef]

R. Sun, V. Nguyen, A. Agarwal, C. Hong, J. Yasaitis, L. Kimerling, and J. Michel, “High performance asymmetric graded index coupler with integrated lens for high index waveguides,” Appl. Phys. Lett. 90(20), 201116 (2007).
[CrossRef]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

J. K. Doylend and A. P. Knights, “Design and Simulation of an Integrated Fiber-to-Chip Coupler for Silicon-on-Insulator Waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1363–1370 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[CrossRef]

G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett. 17(12), 2613–2615 (2005).
[CrossRef]

J. Lightwave Technol. (6)

J. Vac. Sci. Technol. B (1)

M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, and C. Manolatou, “Fabrication of three-dimensional mode converters for silicon-based integrated optics,” J. Vac. Sci. Technol. B 21(6), 2897–2902 (2003).
[CrossRef]

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Other (11)

M. Fan, M. Popović, and F. X. Kärtner, “High Directivity, Vertical Fiber-to-Chip Coupler with Anisotropically Radiating Grating Teeth,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper CTuDD3.

I. E. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. K. Tsang, and M. Asghari, “Tapered Silicon Waveguides for Low Insertion Loss Highly-Efficient High-Speed Electronic Variable Optical Attenuators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2003), paper TuM5.

R. J. Bozeat, S. Day, F. Hopper, F. P. Payne, S. W. Roberts, and M. Asghari, “Silicon Based Waveguides,” in Silicon Photonics, L. Pavesi, D. J. Lockwood, eds. (Springer, 2004).

R. Orobtchouk, “On Chip Optical Waveguide Interconnect: the Problem of the In/Out Coupling,” in Optical Interconnects: the Silicon Approach, L. Pavesi, G. Guillot, eds. (Springer, 2006).

C. Manolatou, and H. A. Haus, Passive components for dense optical integration (Kluwer Academic Publishers, 2001), chap. 6.

A. Khilo, M. Popović, and F. X. Kärtner, “Efficient Planar Fiber-to-Chip Coupler based on Two-Stage Adiabatic Evolution,” presented at ICONO/LAT Conference, Minsk, Belarus, 2007, paper IO2/VIII-1.

A. Khilo, and F. X. Kärtner, “Efficient Planar Single-Mode Fiber-to-Chip Coupler based on Two-Stage Adiabatic Evolution,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2010), paper JThE30.

M. Qi, M. R. Watts, T. Barwicz, L. Socci, P. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Two-Layer Microphotonic Structures without Planarization,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2005), paper CWD5.

M. A. Popović, T. Barwicz, E. P. Ippen, and F. X. Kärtner, “Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2006), paper CTuCC1.

FIMMWAVE/FIMMPROP by Photon Design, http://www.photond.com .

C. W. Holzwarth, J. S. Orcutt, H. Li, M. A. Popović, V. Stojanović, J. L. Hoyt, R. J. Ram, and H. I. Smith, “Localized Substrate Removal Technique Enabling Strong-Confinement Microphotonics in Bulk Si CMOS Processes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2008), paper CThKK5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Layout of the two-stage adiabatic coupler (not drawn to scale). The light from the fiber is coupled into the fiber-matched low-index waveguide, transferred into a smaller waveguide in stage I using a rib taper, and coupled into sub-micron Si waveguide in stage II using an inverse Si taper; (b) intensity distribution of the fundamental TE mode at positions labeled with numbers in Fig. 1(a). Positions 1-3 correspond to the rib taper and 4-6 to the inverse taper.

Fig. 2
Fig. 2

Optimization of rib and inverse taper lengths for a coupler with W = H = 10µm, w = h = 4.5µm, and n = 1.50. Plots (a) and (b) show loss vs. length in the rib and inverse tapers. Plot (c) shows rib taper length, inverse taper length, and total length as a function of loss in the rib taper (bottom axis) and inverse taper (top axis), assuming 5% total loss in both tapers.

Fig. 3
Fig. 3

(a) Length of stage I (rib taper) and (b) length of stage II (inverse taper) as a function of stage II height h. It is assumed that W = H = 10µm, w = h, and n = 1.50. The lengths correspond to 5% mode conversion loss.

Fig. 4
Fig. 4

The total coupler length corresponding to 5% mode conversion loss as a function of height ratio α for H = W = 10µm, w = h, n = 1.50. For each α, the lengths of the rib and inverse tapers were optimized (the optimal values are also plotted) to minimize the total length.

Fig. 5
Fig. 5

Dependence of length on refractive index for (a) rib taper with H = W = 4µm, h = w = 2µm, (b) inverse taper with w = h = 4µm. The refractive index of the SiO2 undercladding is 1.45.

Fig. 6
Fig. 6

Performance of the two-stage and inverse taper-based couplers designed for fibers with MDF = 4.0µm (plots on the left) and 8.0µm (plots on the right) as a function of the refractive index n. (a) Lengths of the optimized two-stage and inverse taper-based couplers with the same input cross-sections and 5% mode conversion loss, and (b) the ratio of these two lengths. The data points represent simulation results, and the curves are the fits to these points. The details of the designs can be found in Fig. 7.

Fig. 7
Fig. 7

Parameters of the optimized two-stage couplers whose lengths are plotted in Fig. 6. The fiber MDF is 4.0µm and 8.0µm for the left- and the right-hand plots, respectively, and the coupler parameters are plotted as a function of refractive index n. (a) Lengths of the inverse taper section, rib taper section, and the total length of the optimized two-stage coupler with 5% mode conversion loss; (b) the height ratio α of the optimized two-stage coupler; (c) width W and height H of the low-index waveguide at the input where it matches the fiber, as well as width w and height h of the low-index waveguide in the inverse taper section. The data points represent simulation results, and the curves are the fits to these points.

Fig. 8
Fig. 8

Dependence of inverse taper length on width w and height h of the low-index waveguide with n = 1.55. For one curve, the width is 4µm and the height is the x-axis parameter, and for the other curve, the height is 4µm and the width is the x-axis parameter.

Fig. 9
Fig. 9

Mode conversion loss as a function of length of an inverse taper-based coupler matched to a fiber with MFD = 4.0µm for n = 1.58, 1.59, and 1.60. The last three points in the upper line in the left plot of Fig. 6(a) are given by intersection of the three curves of Fig. 9 with the 5% loss line.

Fig. 10
Fig. 10

The loss in (a) an optimized two-stage coupler and (b) an inverse taper-based coupler of the same length, obtained with 3D FDTD simulations. The couplers were matched to a fiber with MFD = 4.0µm, the total length was 130.6µm, and the low-index waveguide had n = 1.55. The two-stage coupler was optimized for 5% (0.22dB) mode conversion loss at 1550nm with the eigenmode expansion method [32].

Fig. 11
Fig. 11

The loss in (a) an optimized two-stage coupler and (b) an inverse taper-based coupler obtained with three-dimensional FDTD simulations. The input fiber had MFD = 4.0µm, the total length was 128.4µm, and the low-index waveguide had n = 1.55 for both cases. Compared to the other simulations in this paper, the silicon waveguide thickness was increased from 105nm to 220nm to improve the confinement of the TM mode.

Metrics