Abstract

We demonstrate experimentally and numerically that the SBS based in-band OSNR monitoring technique can be used for dual polarization signals. We also present a novel approach for a drastic enhancement of the sensitivity monitoring range by intentionally adding in-band ASE noise into the signal. Numerical results are provided for 44.6 Gbps DPSK, 44.6 Gbps DQPSK and 112 Gbps Dual Polarization (DP-) QPSK signals, with both 100 GHz and 50 GHz channel spacing scenarios.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
    [CrossRef]
  2. J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
    [CrossRef]
  3. T. B. Anderson, K. Clarke, S. D. Dods and M. Bakaul, “Robust, low cost, in-band optical signal to noise monitoring using polarization diversity”, presented at OFC/NFOEC 2007, paper OMM3 (2007).
  4. X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
    [CrossRef]
  5. T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In band OSNR monitoring and chromatic dispersion monitoring using a fiber optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
    [CrossRef] [PubMed]
  6. R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All optical in band OSNR monitoring at 40 Gb/s using nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18(3), 469–471 (2006).
    [CrossRef]
  7. K. Clarke, T. Anderson and S. D. Dods, “Monitoring of multiple modulation formats using asynchronous delay-tap sampling”, presented at COIN-ACOFT 2007, (2007).
  8. D. Dahan, D. Levy and U. Mahlab, “Low cost Multi-impairment monitoring technique for 43 Gbps DPSK and 86 Gbps DP-DPSK using delay tap asynchronous sampling method”, presented at ECOC 2009, P3.01 (2009).
  9. E. Flood, W. H. Guo, D. Reid, M. Lynch, A. L. Bradley, L. P. Barry, and J. F. Donegan, “In-band OSNR monitoring using a pair of Michelson fiber interferometers,” Opt. Express 18(4), 3618–3625 (2010).
    [CrossRef] [PubMed]
  10. T. B. Iredale, M. D. Pelusi, and B. J. Eggleton, “Highly-sensitive all optical in band OSNR monitoring using stimulated Brillouin scattering”, presented at COIN/ACOFT.2007, (2007).
  11. A. Fu, M. D. Pelusi, B. J. Eggleton, “Simultaneous Monitoring of In-Band Optical Noise for WDM Signals using Stimulated Brillouin Scattering” presented at OFC/NFOEC 2010, paper OWB2 (2010).
  12. G. P. Agrawal, “Nonlinear Fiber Optics”, 3rd Ed., (Academic Press, 2001).
  13. L. Thévenaz et al., “All-optical polarization control through Brillouin amplification”, presented at OFC/NFOEC 2008, paper OML73 (2008).

2010

2007

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

2006

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All optical in band OSNR monitoring at 40 Gb/s using nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18(3), 469–471 (2006).
[CrossRef]

2005

2004

2001

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

Adams, R.

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All optical in band OSNR monitoring at 40 Gb/s using nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18(3), 469–471 (2006).
[CrossRef]

Bach, R.

Barry, L. P.

Blows, J. L.

Blumenthal, D. J.

Bolger, J. A.

Bradley, A. L.

Buhl, L. L.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Cabot, S.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Chandrasekhar, S.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Chung, Y. C.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

Donegan, J. F.

Eggleton, B. J.

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All optical in band OSNR monitoring at 40 Gb/s using nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18(3), 469–471 (2006).
[CrossRef]

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In band OSNR monitoring and chromatic dispersion monitoring using a fiber optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[CrossRef] [PubMed]

Einstein, D.

Flood, E.

Guo, W. H.

Jung, D. K.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

Kang, I.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Kao, Y.-H.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Kilper, D. C.

Kim, C. H.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

Landolsi, T.

Lee, J. H.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

Littler, I.

Liu, X.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Lynch, M.

Ng, T. T.

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All optical in band OSNR monitoring at 40 Gb/s using nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18(3), 469–471 (2006).
[CrossRef]

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In band OSNR monitoring and chromatic dispersion monitoring using a fiber optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[CrossRef] [PubMed]

Ostar, L.

Preiss, M.

Reid, D.

Rochette, M.

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All optical in band OSNR monitoring at 40 Gb/s using nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18(3), 469–471 (2006).
[CrossRef]

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In band OSNR monitoring and chromatic dispersion monitoring using a fiber optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[CrossRef] [PubMed]

Willner, A. E.

IEEE Photon. Technol. Lett.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, “All optical in band OSNR monitoring at 40 Gb/s using nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18(3), 469–471 (2006).
[CrossRef]

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

T. B. Anderson, K. Clarke, S. D. Dods and M. Bakaul, “Robust, low cost, in-band optical signal to noise monitoring using polarization diversity”, presented at OFC/NFOEC 2007, paper OMM3 (2007).

K. Clarke, T. Anderson and S. D. Dods, “Monitoring of multiple modulation formats using asynchronous delay-tap sampling”, presented at COIN-ACOFT 2007, (2007).

D. Dahan, D. Levy and U. Mahlab, “Low cost Multi-impairment monitoring technique for 43 Gbps DPSK and 86 Gbps DP-DPSK using delay tap asynchronous sampling method”, presented at ECOC 2009, P3.01 (2009).

T. B. Iredale, M. D. Pelusi, and B. J. Eggleton, “Highly-sensitive all optical in band OSNR monitoring using stimulated Brillouin scattering”, presented at COIN/ACOFT.2007, (2007).

A. Fu, M. D. Pelusi, B. J. Eggleton, “Simultaneous Monitoring of In-Band Optical Noise for WDM Signals using Stimulated Brillouin Scattering” presented at OFC/NFOEC 2010, paper OWB2 (2010).

G. P. Agrawal, “Nonlinear Fiber Optics”, 3rd Ed., (Academic Press, 2001).

L. Thévenaz et al., “All-optical polarization control through Brillouin amplification”, presented at OFC/NFOEC 2008, paper OML73 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental set up of in band OSNR monitoring for 40Gbps NRZ OOK and 80 Gbps DP-NRZ OOK signals

Fig. 2
Fig. 2

(a). SBS induced back reflected power dependence on OSNR for 40 Gbps NRZ and 80 Gbps DP-NRZ OOK (b) signals with three launched power levels (15, 17 and 20 dBm). Both experimental and numerical results are presented by curves with plain and empty symbols, respectively.

Fig. 3
Fig. 3

Back reflected power as for function of the launched optical power for different lengths of the HNLF. Experimental results are indicated by the plain circles for 1 km of HNLF

Fig. 4
Fig. 4

Back reflected power as for function of the OSNR with different launched powers into a 3 km long HNLF for 44.6 Gbps DPSK (a), 44.6 Gbps DQPSK (b) and 112 Gbps DP-QPSK (c)

Fig. 5
Fig. 5

Schematics of the SBS based in band OSNR monitoring technique with enhanced OSNR monitoring sensitivity range

Fig. 6
Fig. 6

Relationship between OSNRreal and OSNRalt for different OPcNR levels for NEB = 80 GHz

Fig. 7
Fig. 7

Principle of operation of the enhanced in-band OSNR monitoring with dynamic range improvement: Back reflected power as a function of OSNRalt (a) and OSNRreal as a function of OSNRalt for NEB=80 GHz (b)

Fig. 8
Fig. 8

Dependence of the back reflected power on OSNRreal for several OPcNR levels for 44.6 Gbps DPSK signal in 100 GHz (a) and 50 GHz (b) channel spacing . OSNR sensitivity range as a function of the OPcNR level for OSNRreal from 18dB to 35dB in 100 GHz (c) and 50 GHz (d) channel spacing.

Fig. 9
Fig. 9

Dependence of the back reflected power on OSNRreal for several OPcNR levels for 44.6 Gbps DQPSK signal in 100 GHz (a) and 50 GHz (b) channel spacing . OSNR sensitivity range as a function of the OPcNR level for OSNRreal from 18dB to 35dB in 100 GHz (c) and 50 GHz (d) channel spacing

Fig. 10
Fig. 10

Dependence of the back reflected power on OSNRreal for several OPcNR levels for 112 Gbps DP-QPSK signal in 100 GHz (a) and 50 GHz (b) channel spacing . OSNR sensitivity range as a function of the OPcNR level for OSNRreal from 18dB to 35dB in 100 GHz (c) and 50 GHz (d) channel spacing

Fig. 11
Fig. 11

Dependence of in band OSNR accuracy level on the OSNRreal level in 100 GHz and 50 GHz channel spacing scenarios for 44.6 Gbps DPSK (a), 44.6 Gbps DQPSK (b) and 112 Gbps DP-QPSK (c) Optimum OPcNR levels are used for each modulation format and channel spacing and the optical power monitoring accuracy is assumed to be +/−0.1 dB.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

O P c N R = P c P a d d = P s + P n P a d d = ( O S N R r e a l B r e f N E B + 1 ) ( P n P a d d )
O S N R r e a l = P s P n N E B B r e f
O S N R a l t = P s P n + P a d d N E B B r e f < O S N R r e a l
O S N R r e a l = O S N R a l t O P c N R + 1 O P c N R O S N R a l t B r e f N E B

Metrics