Abstract

One of the key challenges in current research into electromagnetic cloaking is to achieve invisibility at optical frequencies and over an extended bandwidth. There has been significant progress towards this using the idea of cloaking by sweeping under the carpet of Li and Pendry. Here, we show that we can harness surface plasmon polaritons at a metal surface structured with a dielectric material to obtain a unique control of their propagation. We exploit this control to demonstrate both theoretically and experimentally cloaking over an unprecedented bandwidth (650-900 nm). Our non-resonant plasmonic metamaterial is designed using transformational optics extended to plasmonics and allows a curved reflector to mimic a flat mirror. Our theoretical predictions are validated by experiments mapping the surface light intensity at a wavelength of 800 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).
    [CrossRef] [PubMed]
  5. A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for Calderons inverse problem,” Math. Res. Lett. 10, 685-693 (2003).
  6. W. X. Jiang, T. J. Cui, X. M. Yang, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008).
    [CrossRef]
  7. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [CrossRef]
  8. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [CrossRef] [PubMed]
  9. A. Diatta, G. Dupont, S. Guenneau, and S. Enoch, “Broadband cloaking and mirages with flying carpets,” Opt. Express 18(11), 11537–11551 (2010).
    [CrossRef] [PubMed]
  10. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [CrossRef]
  11. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  12. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568 (2009).
    [CrossRef] [PubMed]
  13. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337 (2010).
    [CrossRef] [PubMed]
  14. W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical Cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
    [CrossRef]
  15. M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16(8), 5656–5661 (2008).
    [CrossRef] [PubMed]
  16. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” N. J. Phys. 10(11), 115024 (2008).
    [CrossRef]
  17. M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phys. Rev. Lett. 101(13), 134501 (2008).
    [CrossRef] [PubMed]
  18. M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
    [CrossRef] [PubMed]
  19. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  20. P. J. Bliek, R. Deleuil, L. C. Botten, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies - Theory, experiment, and applications,” IEEE MTT 28(10), 1119–1125 (1980).
    [CrossRef]
  21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  22. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [CrossRef] [PubMed]
  23. F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 1–4 (2005).
    [CrossRef]
  24. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33(12), 1342–1344 (2008).
    [CrossRef] [PubMed]
  25. B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
    [CrossRef]
  26. H. Raether, “Surface Plasmons: On Smooth and Rough Surfaces and Gratings,” Springer Verlag: Berlin (1988).
  27. E. D. Palik, “Handbook of Optical Constants of Solids,” Academic, London, (1985)
  28. J. F. Thompson, B. K. Soni, and N. P. Weatherill, “Handbook of Grid Generation,” CRC Press, Boca Raton, (1998).
  29. J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
    [CrossRef]
  30. A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
    [CrossRef]
  31. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
    [CrossRef] [PubMed]
  32. I. I. Smolyaninov, “Transformational optics of plasmonic metamaterials,” New J. Phys. 10(11), 115033 (2008).
    [CrossRef]
  33. P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, and F. J. García-Vidal, “Transformation Optics for Plasmonics,” http://arxiv.org/abs/1003.1154 .
  34. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational Plasmon Optics,” http://arxiv.org/abs/1003.1326 .
  35. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
    [CrossRef] [PubMed]
  36. M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: cloak, concentrator and rotator for SPPs,” Opt. Express 18(11), 12027–12032 (2010).
    [CrossRef] [PubMed]

2010 (4)

2009 (7)

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[CrossRef]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568 (2009).
[CrossRef] [PubMed]

2008 (7)

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16(8), 5656–5661 (2008).
[CrossRef] [PubMed]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” N. J. Phys. 10(11), 115024 (2008).
[CrossRef]

M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phys. Rev. Lett. 101(13), 134501 (2008).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

I. I. Smolyaninov, “Transformational optics of plasmonic metamaterials,” New J. Phys. 10(11), 115033 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, X. M. Yang, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33(12), 1342–1344 (2008).
[CrossRef] [PubMed]

2007 (3)

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical Cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).
[CrossRef] [PubMed]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 1–4 (2005).
[CrossRef]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for Calderons inverse problem,” Math. Res. Lett. 10, 685-693 (2003).

2001 (1)

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1980 (1)

P. J. Bliek, R. Deleuil, L. C. Botten, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies - Theory, experiment, and applications,” IEEE MTT 28(10), 1119–1125 (1980).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Baida, F. I.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568 (2009).
[CrossRef] [PubMed]

Baumeier, B.

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[CrossRef]

Blanco, L. A.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 1–4 (2005).
[CrossRef]

Bliek, P. J.

P. J. Bliek, R. Deleuil, L. C. Botten, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies - Theory, experiment, and applications,” IEEE MTT 28(10), 1119–1125 (1980).
[CrossRef]

Borisov, A. G.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 1–4 (2005).
[CrossRef]

Botten, L. C.

P. J. Bliek, R. Deleuil, L. C. Botten, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies - Theory, experiment, and applications,” IEEE MTT 28(10), 1119–1125 (1980).
[CrossRef]

Bouhelier, A.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[CrossRef]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337 (2010).
[CrossRef] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical Cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical Cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Davis, C. C.

Deleuil, R.

P. J. Bliek, R. Deleuil, L. C. Botten, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies - Theory, experiment, and applications,” IEEE MTT 28(10), 1119–1125 (1980).
[CrossRef]

Diatta, A.

Dupont, G.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Eng, L. M.

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Enoch, S.

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337 (2010).
[CrossRef] [PubMed]

Farhat, M.

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[CrossRef] [PubMed]

M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phys. Rev. Lett. 101(13), 134501 (2008).
[CrossRef] [PubMed]

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16(8), 5656–5661 (2008).
[CrossRef] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 1–4 (2005).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gómez-Santos, G.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 1–4 (2005).
[CrossRef]

González, M. U.

Grafström, S.

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

Greenleaf, A.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” N. J. Phys. 10(11), 115024 (2008).
[CrossRef]

Guenneau, S.

Guntherodt, H.-J.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[CrossRef]

Hung, Y. J.

Huser, T.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Jiang, W. X.

W. X. Jiang, T. J. Cui, X. M. Yang, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kadic, M.

Kildiev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical Cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Kildishev, A. V.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

Kurylev, Y.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” N. J. Phys. 10(11), 115024 (2008).
[CrossRef]

Lassas, M.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” N. J. Phys. 10(11), 115024 (2008).
[CrossRef]

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Leskova, T. A.

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568 (2009).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

Maradudin, A. A.

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[CrossRef]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Maystre, D.

P. J. Bliek, R. Deleuil, L. C. Botten, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies - Theory, experiment, and applications,” IEEE MTT 28(10), 1119–1125 (1980).
[CrossRef]

McPhedran, R. C.

P. J. Bliek, R. Deleuil, L. C. Botten, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies - Theory, experiment, and applications,” IEEE MTT 28(10), 1119–1125 (1980).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Movchan, A. B.

M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16(8), 5656–5661 (2008).
[CrossRef] [PubMed]

M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phys. Rev. Lett. 101(13), 134501 (2008).
[CrossRef] [PubMed]

Nicolet, A.

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337 (2010).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32(9), 1069–1071 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Pohl, D. W.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[CrossRef]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

Quidant, R.

Randhawa, S.

Renger, J.

S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010).
[CrossRef] [PubMed]

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shabanov, S. V.

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 1–4 (2005).
[CrossRef]

Shalaev, V. M.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical Cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

W. X. Jiang, T. J. Cui, X. M. Yang, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

I. I. Smolyaninov, “Transformational optics of plasmonic metamaterials,” New J. Phys. 10(11), 115033 (2008).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33(12), 1342–1344 (2008).
[CrossRef] [PubMed]

Smolyaninova, V. N.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337 (2010).
[CrossRef] [PubMed]

Tamaru, H.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

Uhlmann, G.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” N. J. Phys. 10(11), 115024 (2008).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568 (2009).
[CrossRef] [PubMed]

Van Labeke, D.

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[CrossRef]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337 (2010).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Yang, X. M.

W. X. Jiang, T. J. Cui, X. M. Yang, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568 (2009).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568 (2009).
[CrossRef] [PubMed]

Zolla, F.

Appl. Phys. Lett. (1)

W. X. Jiang, T. J. Cui, X. M. Yang, R. Liu, and D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93, 194102 (2008).
[CrossRef]

IEEE MTT (1)

P. J. Bliek, R. Deleuil, L. C. Botten, R. C. McPhedran, and D. Maystre, “Inductive grids in the region of diffraction anomalies - Theory, experiment, and applications,” IEEE MTT 28(10), 1119–1125 (1980).
[CrossRef]

Math. Res. Lett. (1)

A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for Calderons inverse problem,” Math. Res. Lett. 10, 685-693 (2003).

N. J. Phys. (1)

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” N. J. Phys. 10(11), 115024 (2008).
[CrossRef]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, “Optical Cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

New J. Phys. (1)

I. I. Smolyaninov, “Transformational optics of plasmonic metamaterials,” New J. Phys. 10(11), 115033 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

A. Bouhelier, T. Huser, H. Tamaru, H.-J. Guntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63(15), 155404 (2001).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95(6), 1–4 (2005).
[CrossRef]

B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103(24), 246803 (2009).
[CrossRef]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phys. Rev. Lett. 101(13), 134501 (2008).
[CrossRef] [PubMed]

M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103(2), 024301 (2009).
[CrossRef] [PubMed]

Science (7)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband Ground-Plane Cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337 (2010).
[CrossRef] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other (5)

H. Raether, “Surface Plasmons: On Smooth and Rough Surfaces and Gratings,” Springer Verlag: Berlin (1988).

E. D. Palik, “Handbook of Optical Constants of Solids,” Academic, London, (1985)

J. F. Thompson, B. K. Soni, and N. P. Weatherill, “Handbook of Grid Generation,” CRC Press, Boca Raton, (1998).

P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, and F. J. García-Vidal, “Transformation Optics for Plasmonics,” http://arxiv.org/abs/1003.1154 .

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational Plasmon Optics,” http://arxiv.org/abs/1003.1326 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Quasi-conformal grid associated with transformed plasmonic space in a crescent carpet; (b) SPP incident from the top on the heterogeneous carpet deduced from the quasi-conformal mapping (c) SEM micrograph of the structure realized by single-step electron-beam-lithography. The cloak is made of TiO2 cones as shown in the zoom (upper right). The TiO2 particles have a conical shape numerically approximated by a cylindrical one (h=200 nm, r=100 nm).

Fig. 2
Fig. 2

Numerical diffraction of a SPP incident from the top for (b), (c) and (d). Magnitude of the magnetic field is represented: (a) 3D structure used in the simulations. (b) The incident SPP (yellow arrow) hits the straight reflector (red line). (c) The incident SPP (yellow arrow) hits the curved reflector (red line). (d) Placing the cloak in front of the curved reflector (red line) nearly compensates for the curved reflector leading to a straight beating pattern.

Fig. 4
Fig. 4

Numerical simulation of SPPs interacting with a dielectric carpet for different wavelengths. Magnitude of the magnetic field is represented for wavelengths (a) 650 nm, (b) 700 nm, (c) 800 nm, and (d) 900 nm, respectively.

Fig. 5
Fig. 5

Experimental image of the leakage radiation of the SPPs interacting with a curved Bragg mirror. The SPPs are excited by slightly focussing the light at the lithographically structured defect line (marked by the yellow rectangular) and propagate under 90° at the surface away in both directions as indicated by the yellow arrows. The doted yellow rectangular indicates the area zoomed in Fig. 6.

Fig. 6
Fig. 6

Experimental image of the leakage radiation of the SPP at λ=800 nm. (a) The incident SPP (yellow arrow) hits the straight Bragg mirror (red). The interference with the back-reflected SPPs (green) results in a straight beating pattern. (c) The incident SPPs (yellow arrow) hit a curved Bragg mirror (red). The backreflected SPPs (green) have different directions due to the curved shape of the reflector resulting in the curved intensity pattern dominated by the beating of the counter-propagating SPPs. (b) Cloak is placed in front of the curved Bragg mirror. The beating pattern in reflection is clearly visible and similar to a straight Bragg reflector. (d) Averaged relative position of the interference fringes

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

{ H 2 = ( 0 , H y 2 , 0 ) exp { ι ( k x 2 x ω t ) k z 2 z } ,         z > 0 , H 1 = ( 0 , H y 1 , 0 ) exp { ι ( k x 1 x ω t ) + k z 1 z } ,             z < 0 ,
k z i = k x 2 ε i ( ω c ) 2 , k z 1 ε 1 + k z 2 ε 2 = 0
k x = ω c ε 1 ε 2 ε 1 + ε 2 ,
{ x = x 2 ( y ) x 1 ( y ) x 2 ( y ) x + x 1 ( y ) , 0 < x < x 2 ( y ) , y = y , a < y < b ,             z = z , 0 < z < + ,        
ε ¯ ¯ = T 1 , and μ ¯ ¯ = T 1 where   T = J T J / det ( J ) ,
( T 1 ) 11 = ( 1 + ( x y ) 2 ) α , ( T 1 ) 12 = ( T 1 ) 21 = x y ( T 1 ) 22 = 1 α , ( T 1 ) 33 = 1 α ,
{ × H 2 = ι ω ε 0 ε ¯ ¯ E 2 ,           z > 0 , × H 1       = ι ω ε 0 E 1 ,                     z < 0 ,
{ H 2 = ( 0 , H y 2 , 0 ) exp { ι ( k x 2 x ω t ) k z 2 z } , z > 0 , H 1 = ( 0 , H y 1 , 0 ) exp { ι ( k x 1 x ω t ) + k z 1 z } , z < 0 ,
{ E 2 = c ω H y 2 ( k z 2 ε x x 2 , 0 , k x 2 ε z z 2 ) exp { ι ( k x 2 x ω t ) k z 2 z } , z > 0 , E 1 = c ω H y 1 ( k z 1 ε 1 , 0 , k x 1 ε 1 ) exp { ι ( k x 1 x ω t ) + k z 1 z } , z < 0 ,
{ × E 2 = ι ω μ 0 μ ¯ ¯ ' H 2 , z > 0 , × E 1 = ι ω μ 0 H 1 , z < 0 ,
k z j = ε x x 2 ( k x j 2 ε z z 2 μ y y 2 ( ω c ) 2 ) , j = 1 , 2.
k z 1 ε 1 + k z 2 ε x x 2 = 0 .
k x = ω c ε z z 2 ε 1 ( μ y y 2 ε 1 ε x x 2 ) ε 1 2 ε x x 2 ε z z 2 .
z m e t a l = λ 2 π R e ( ε 1 ) + ε 2 ε 1 2
z a i r = λ 2 π R e ( ε 1 ) + ε 2 ε 2 2 .
L = c ϖ | R e ( ε 1 ) + ε 2 ε 1 ε 2 | 3 / 2 R e ( ε 1 ) 2 I m ( ε 1 ) .
ε 1 = ε r + ι ε i ,     ε x x 2 = ε x 2 , ε y y 2 = ε y 2 , ε z z 2 = ε z 2 ,
X = ω 2 ε z 2 2 ε r 2 2 ε z 2 ε r ε i 2 + ε i 4 + ε i 2 μ y 2 2 ε r 2 2 ε i 2 μ y 2 ε r ε x 2 + ε i 2 ε x 2 2 c 2 ε r 4 + 2 ε i 2 ε r 2 2 ε r 2 ε x 2 ε z 2 + ε i 4 + 2 ε i 2 ε x x 2 ε z 2 + ε x 2 2 ε z 2 2 ,
Y = ω 2 ( ε z 2 ε r 3 + ε z 2 ε r ε i 2 + ε z 2 2 ε r ε x 2 + ε i 2 ε r 2 ε i 4 ε i 2 ε x 2 ε z 2 2 ε i 2 ε r 2 μ y 2 + 2 ε r ε i 2 ε x 2 ) c 2 ( ε r 4 + 2 ε i 2 ε r 2 2 ε r 2 ε x 2 ε z 2 + ε i 4 + 2 ε i 2 ε x 2 ε z 2 + ε x 2 2 ε z 2 2 ) .
L t = 1 / 2 2 X + Y .
Λ i = 1 2 α ( 1 + α 2 + ( y x ) 2 α 2 + ( 1 ) i 1 4 α 2 + ( 1 + α 2 + ( y x ) 2 α 2 ) 2 ) , Λ 3 = 1 α ,
k x = ω c Λ 3 ε 1 ( Λ 2 ε 1 Λ 1 ) ε 1 2 Λ 1 Λ 3 .
× ( ε ¯ ¯ 1 × H ) k 0 2 H = 0 ,

Metrics