Abstract

We report the design, fabrication and characterization of a lead-silicate glass highly nonlinear W-type fiber with a flattened and near-zero dispersion profile in the 1.55 μm region. The fiber was composed of three types of commercial lead silicate glasses. Effectively single-mode guidance was observed in the fiber at 1550nm. The nonlinear coefficient and the propagation loss at this wavelength were measured to be 820 W−1km−1 and 2.1dB/m, respectively. Investigations of the Brillouin threshold revealed no evidence of stimulated Brillouin scattering for continuous wave signal powers up to 29dBm in a 2m sample of the fiber. A broadband dispersion measurement confirmed the near-zero dispersion values and the flat dispersion profile around 1550nm, in good agreement with our simulations. Efficient four-wave-mixing, tunable across the whole C-band, was demonstrated in a 2.2m length of the fiber.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [CrossRef]
  2. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
    [CrossRef]
  3. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
    [CrossRef] [PubMed]
  4. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded single-mode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
    [CrossRef]
  5. L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
    [CrossRef]
  6. S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fibre drawing,” J. Jpn. Instrum.Met. 62, 106–110 (1998).
  7. A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Four-wave mixing-based wavelength conversion in a short-Length of a solid 1D microstructured fibre,” ECOC, Th. 9.1.3,Vienna, (2009).
  8. S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
    [CrossRef] [PubMed]
  9. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 μm,” Opt. Express 17(22), 20249–20255 (2009).
    [CrossRef] [PubMed]
  10. Schott E-catalogue, 2000, Optical Glass for Windows, version 1.1E, (Schott Glass, 2001).
  11. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005).
    [CrossRef] [PubMed]
  12. A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fibre,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
    [CrossRef]
  13. X. Feng, A. K. Mairaj, D. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 62046–62054 (2005).
  14. T. Tsumuraya, and M. Suzuki, “Polishing method for inner surface of tubular brittle material and tubular brittle material obtained by polishing method,” US Patent No. US 7238089 B2 (Date of Patent: Jul. 3, 2007).
  15. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n(2) in various types of telecommunication fiber at 1.55 μm,” Opt. Lett. 21(24), 1966–1968 (1996).
    [CrossRef] [PubMed]
  16. F. Poletti, K. Furusawa, Z. Yusoff, N. G. R. Broderick, and D. J. Richardson, “Nonlinear tapered holey fibers with high SBS threshold and controlled dispersion,” J. Opt. Soc. Am. B 24(9), 2185–2194 (2007).
    [CrossRef]
  17. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers,” Opt. Lett. 30(13), 1698–1700 (2005).
    [CrossRef] [PubMed]
  18. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
    [CrossRef]

2010 (1)

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fibre,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

2009 (1)

2007 (3)

2006 (1)

2005 (4)

2004 (1)

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

1998 (1)

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fibre drawing,” J. Jpn. Instrum.Met. 62, 106–110 (1998).

1996 (1)

1981 (1)

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[CrossRef]

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Asimakis, S.

Boskovic, A.

Broderick, N. G. R.

Camerlingo, A.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fibre,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 μm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

Chernikov, S. V.

Ebendorff-Heidepriem, H.

Eggleton, B. J.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Feng, X.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fibre,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 μm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded single-mode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[CrossRef]

X. Feng, A. K. Mairaj, D. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 62046–62054 (2005).

Finazzi, V.

Frampton, K.

Frampton, K. E.

Fu, L.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Fuerbach, A.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Fujino, S.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fibre drawing,” J. Jpn. Instrum.Met. 62, 106–110 (1998).

Furusawa, K.

Gruner-Nielsen, L.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Hasegawa, T.

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Hewak, D.

X. Feng, A. K. Mairaj, D. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 62046–62054 (2005).

Horak, P.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fibre,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 μm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

Ijiri, H.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fibre drawing,” J. Jpn. Instrum.Met. 62, 106–110 (1998).

Kikuchi, K.

Koizumi, F.

Lamont, M. R. E.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Lee, J. H.

Leong, J. Y. Y.

Levring, O. A.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Littler, I. C. M.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Loh, W. H.

Magi, E. C.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Mairaj, A. K.

X. Feng, A. K. Mairaj, D. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 62046–62054 (2005).

Monro, T. M.

Moore, R.

Moore, R. C.

Morinaga, K.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fibre drawing,” J. Jpn. Instrum.Met. 62, 106–110 (1998).

Nagashima, T.

Nguyen, H. C.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Ohara, S.

Parmigiani, F.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fibre,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 μm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

Pelusi, M. D.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Petropoulos, P.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fibre,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 μm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded single-mode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

Poletti, F.

Price, J. H. V.

Richardson, D. J.

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fibre,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 μm,” Opt. Express 17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

F. Poletti, K. Furusawa, Z. Yusoff, N. G. R. Broderick, and D. J. Richardson, “Nonlinear tapered holey fibers with high SBS threshold and controlled dispersion,” J. Opt. Soc. Am. B 24(9), 2185–2194 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1μm pumped supercontinuum generation,” J. Lightwave Technol. 24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded single-mode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[CrossRef]

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13(10), 3728–3736 (2005).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

Shang, H.-T.

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[CrossRef]

Shimizu, F.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fibre drawing,” J. Jpn. Instrum.Met. 62, 106–110 (1998).

Sugimoto, N.

Ta’eed, V. G.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Tanemura, T.

Taylor, J. R.

Tse, V.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Yeom, D. I.

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Yusoff, Z.

Electron. Lett. (2)

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded single-mode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett. 41(15), 835–837 (2005).
[CrossRef]

H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Wavelength Conversion in a Short Length of a Solid Lead-Silicate Fibre,” IEEE Photon. Technol. Lett. 22(9), 628–630 (2010).
[CrossRef]

J. Jpn. Instrum.Met. (1)

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fibre drawing,” J. Jpn. Instrum.Met. 62, 106–110 (1998).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

L. Fu, V. G. Ta’eed, E. C. Magi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibres for all-optical signal processing,” Opt. Quantum Electron. 39(12-13), 1115–1131 (2007).
[CrossRef]

Other (3)

Schott E-catalogue, 2000, Optical Glass for Windows, version 1.1E, (Schott Glass, 2001).

A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, “Four-wave mixing-based wavelength conversion in a short-Length of a solid 1D microstructured fibre,” ECOC, Th. 9.1.3,Vienna, (2009).

T. Tsumuraya, and M. Suzuki, “Polishing method for inner surface of tubular brittle material and tubular brittle material obtained by polishing method,” US Patent No. US 7238089 B2 (Date of Patent: Jul. 3, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Numerical simulations of the dispersion profile of the fiber for various core diameters (solid and dashed lines) and dispersion of the bulk glass SF57 (dash-dotted line); (b): Schematic of the W-type index profile of SF57-LLF1-SF6 fiber with high index-contrast.

Fig. 2
Fig. 2

(a) Schematic of the fabrication of the W-type fiber with improved attenuation; (b) SEM photographs of the fabricated W-type fiber.

Fig. 3
Fig. 3

(a) Simulated and (b) measured LP01 mode of the fiber; (c) linear fitting of the transmitted power (on a log scale) from the output end of the fiber, using the cutback method, (d) nonlinear phase shift versus input power measured at the output of the fiber.

Fig. 4
Fig. 4

Spectra of the input (red dotted line) and the output (solid lines) signals reflected back from the W-type fiber for power levels ranging from 20 to 29dBm into the fiber. The vertical dashed line indicates where the SBS shift would be expected. Note that the input signal has been scaled up for visual purposes.

Fig. 5
Fig. 5

(a) Observed interferogram of one of the two polarizations propagating in the W-type fiber; (b) Simulated (red solid line) and measured (blue symbols) dispersion curve of the W-type fiber.

Fig. 6
Fig. 6

Experimental setup of FWM-based wavelength conversion scheme.

Fig. 7
Fig. 7

(a), (b): Measured spectral traces of FWM-based wavelength conversion in a 2.2m-length of W-type fiber using a quasi-CW pump and tunable CW signal; (c) Simulated (solid blue line) and measured (red symbols) curves for the FWM conversion efficiency in the fabricated W-type fiber.

Metrics