Abstract

We report on a study of electromagnetic waves propagation in thin periodically ordered photonic nanostructures in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method we use allows us to determine the group index from finite photonic structures including extinction providing confirmation of recently emerged results. We show that for certain frequencies the group velocity of opal slabs can either be superluminal or approach zero depending on the crystal thickness and the unavoidable presence of losses. In some cases, group velocity can be negative. Such behavior can be clearly attributed to the finite character of the three-dimensional structure and reproduces previously reported experimental observations. Calculations show that contrary to the predictions of extraordinary group velocity reductions for infinite periodic structures, the group velocity of real opals may exhibit strong fluctuations at the high energy range. Hence, a direct identification between the calculated anomalous group velocities, for an actual opal film, and the predicted propagating low dispersion modes for an ideal infinite ordered structure seems difficult to establish.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sakoda, “Optical properties of photonic crystals,” Springer-Verlag, Berlin (2005).
  2. A. A. Fedyanin, O. Aktsipetrov, D. A. Kurdyukov, V. G. Golubev, and M. Inoue, “Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals,” Appl. Phys. Lett. 87(15), 151111 (2005).
    [CrossRef]
  3. M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
    [CrossRef]
  4. H. Noh, M. Scharrer, M. A. Anderson, R. P. H. Chang, and H. Cao, “Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal,” Phys. Rev. B 77(11), 115136 (2008).
    [CrossRef]
  5. M. Botey, M. Maymó, A. Molinos-Gómez, L. A. Dorado, R. A. Depine, G. Lozano, A. Mihi, H. Míguez, and J. Martorell, “Second Harmonic Generation at the High Energy Range in a Nonlinear Opal Film,” Opt. Express 17, 12210 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12210 .
    [CrossRef] [PubMed]
  6. J. F. Galisteo-López, M. Galli, A. Balestreri, L. C. Andreani, and C. López, “Optical response of artificial opals oriented along the ΓX direction,” Appl. Phys. Lett. 90(23), 231112 (2007).
    [CrossRef]
  7. J. F. Galisteo-López, M. Galli, A. Balestreri, M. Patrini, L. C. Andreani, and C. López, “Slow to superluminal light waves in thin 3D photonic crystals,” Opt. Express 15(23), 15342–15350 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15342 .
    [CrossRef] [PubMed]
  8. L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Interplay between crystal-size and disorder in the high-energy optical response of photonic crystals slabs,” Phys. Rev. B 76(24), 245103 (2007).
    [CrossRef]
  9. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
    [CrossRef] [PubMed]
  10. M. Botey, L. A. Dorado, R. A. Depine, G. Lozano, H. Miguez, and J. Martorell, “Anomalous group velocity in a 3D photonic nanostructure,” in Conference on Lasers and Electro-Optics Europe/European Quantum Electronics Conference, Technical Digest (CD), (Optical Society of America, 2009), paper CK3.2Tue.
  11. J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
    [CrossRef]
  12. N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter 4(36), 7389–7400 (1992).
    [CrossRef]
  13. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
    [CrossRef]
  14. K. Ohtaka, “Scattering theory of low-energy photon diffraction,” J. Phys. C: Solid State 13(4), 667–680 (1980).
    [CrossRef]
  15. A. Modinos, “Scattering of electromagnetic waves by a plane of spheres-formalism,” Physica A 141(2-3), 575–588 (1987).
    [CrossRef]
  16. L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Physical origin of the high energy optical response of three dimensional photonic crystals,” Opt. Express 15(26), 17754–17760 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17754 .
    [CrossRef] [PubMed]
  17. F. García-Santamaría and P. V. Braun, “Are artificial opals non-close-packed fcc structures?” Appl. Phys. Lett. 90(24), 241905 (2007).
    [CrossRef]
  18. L. A. Dorado, R. A. Depine, D. Schinca, G. Lozano, and H. Míguez, “Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals,” Phys. Rev. B 78(7), 075102 (2008).
    [CrossRef]
  19. G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
    [CrossRef]
  20. M. Botey, M. Maymó, and J. Martorell, “Band-structure determination for finite 3-D photonic crystals,” Appl. Phys. B 81(2-3), 277–281 (2005).
    [CrossRef]
  21. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
    [CrossRef]
  22. G. Lozano, L. A. Dorado, D. Schinca, R. A. Depine, and H. Míguez, “Optical analysis of the fine crystalline structure of artificial opal films,” Langmuir 25(22), 12860–12864 (2009).
    [CrossRef] [PubMed]
  23. L. A. Dorado and R. A. Depine, “Modeling of disorder effects and optical extinction in three-dimensional photonic crystals,” Phys. Rev. B 79(4), 045124 (2009).
    [CrossRef]

2009

M. Botey, M. Maymó, A. Molinos-Gómez, L. A. Dorado, R. A. Depine, G. Lozano, A. Mihi, H. Míguez, and J. Martorell, “Second Harmonic Generation at the High Energy Range in a Nonlinear Opal Film,” Opt. Express 17, 12210 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12210 .
[CrossRef] [PubMed]

G. Lozano, L. A. Dorado, D. Schinca, R. A. Depine, and H. Míguez, “Optical analysis of the fine crystalline structure of artificial opal films,” Langmuir 25(22), 12860–12864 (2009).
[CrossRef] [PubMed]

L. A. Dorado and R. A. Depine, “Modeling of disorder effects and optical extinction in three-dimensional photonic crystals,” Phys. Rev. B 79(4), 045124 (2009).
[CrossRef]

2008

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
[CrossRef] [PubMed]

J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[CrossRef]

H. Noh, M. Scharrer, M. A. Anderson, R. P. H. Chang, and H. Cao, “Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal,” Phys. Rev. B 77(11), 115136 (2008).
[CrossRef]

L. A. Dorado, R. A. Depine, D. Schinca, G. Lozano, and H. Míguez, “Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals,” Phys. Rev. B 78(7), 075102 (2008).
[CrossRef]

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

2007

J. F. Galisteo-López, M. Galli, A. Balestreri, L. C. Andreani, and C. López, “Optical response of artificial opals oriented along the ΓX direction,” Appl. Phys. Lett. 90(23), 231112 (2007).
[CrossRef]

J. F. Galisteo-López, M. Galli, A. Balestreri, M. Patrini, L. C. Andreani, and C. López, “Slow to superluminal light waves in thin 3D photonic crystals,” Opt. Express 15(23), 15342–15350 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15342 .
[CrossRef] [PubMed]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Interplay between crystal-size and disorder in the high-energy optical response of photonic crystals slabs,” Phys. Rev. B 76(24), 245103 (2007).
[CrossRef]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Physical origin of the high energy optical response of three dimensional photonic crystals,” Opt. Express 15(26), 17754–17760 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17754 .
[CrossRef] [PubMed]

F. García-Santamaría and P. V. Braun, “Are artificial opals non-close-packed fcc structures?” Appl. Phys. Lett. 90(24), 241905 (2007).
[CrossRef]

2006

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[CrossRef]

2005

A. A. Fedyanin, O. Aktsipetrov, D. A. Kurdyukov, V. G. Golubev, and M. Inoue, “Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals,” Appl. Phys. Lett. 87(15), 151111 (2005).
[CrossRef]

M. Botey, M. Maymó, and J. Martorell, “Band-structure determination for finite 3-D photonic crystals,” Appl. Phys. B 81(2-3), 277–281 (2005).
[CrossRef]

2003

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

1998

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

1992

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter 4(36), 7389–7400 (1992).
[CrossRef]

1987

A. Modinos, “Scattering of electromagnetic waves by a plane of spheres-formalism,” Physica A 141(2-3), 575–588 (1987).
[CrossRef]

1980

K. Ohtaka, “Scattering theory of low-energy photon diffraction,” J. Phys. C: Solid State 13(4), 667–680 (1980).
[CrossRef]

Aktsipetrov, O.

A. A. Fedyanin, O. Aktsipetrov, D. A. Kurdyukov, V. G. Golubev, and M. Inoue, “Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals,” Appl. Phys. Lett. 87(15), 151111 (2005).
[CrossRef]

Anderson, M. A.

H. Noh, M. Scharrer, M. A. Anderson, R. P. H. Chang, and H. Cao, “Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal,” Phys. Rev. B 77(11), 115136 (2008).
[CrossRef]

Andreani, L. C.

Baba, T.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
[CrossRef] [PubMed]

Balestreri, A.

Botey, M.

Braun, P. V.

F. García-Santamaría and P. V. Braun, “Are artificial opals non-close-packed fcc structures?” Appl. Phys. Lett. 90(24), 241905 (2007).
[CrossRef]

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Cao, H.

H. Noh, M. Scharrer, M. A. Anderson, R. P. H. Chang, and H. Cao, “Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal,” Phys. Rev. B 77(11), 115136 (2008).
[CrossRef]

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[CrossRef]

Chang, R. P. H.

H. Noh, M. Scharrer, M. A. Anderson, R. P. H. Chang, and H. Cao, “Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal,” Phys. Rev. B 77(11), 115136 (2008).
[CrossRef]

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[CrossRef]

Depine, R. A.

M. Botey, M. Maymó, A. Molinos-Gómez, L. A. Dorado, R. A. Depine, G. Lozano, A. Mihi, H. Míguez, and J. Martorell, “Second Harmonic Generation at the High Energy Range in a Nonlinear Opal Film,” Opt. Express 17, 12210 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12210 .
[CrossRef] [PubMed]

G. Lozano, L. A. Dorado, D. Schinca, R. A. Depine, and H. Míguez, “Optical analysis of the fine crystalline structure of artificial opal films,” Langmuir 25(22), 12860–12864 (2009).
[CrossRef] [PubMed]

L. A. Dorado and R. A. Depine, “Modeling of disorder effects and optical extinction in three-dimensional photonic crystals,” Phys. Rev. B 79(4), 045124 (2009).
[CrossRef]

L. A. Dorado, R. A. Depine, D. Schinca, G. Lozano, and H. Míguez, “Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals,” Phys. Rev. B 78(7), 075102 (2008).
[CrossRef]

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Interplay between crystal-size and disorder in the high-energy optical response of photonic crystals slabs,” Phys. Rev. B 76(24), 245103 (2007).
[CrossRef]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Physical origin of the high energy optical response of three dimensional photonic crystals,” Opt. Express 15(26), 17754–17760 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17754 .
[CrossRef] [PubMed]

Dorado, L. A.

L. A. Dorado and R. A. Depine, “Modeling of disorder effects and optical extinction in three-dimensional photonic crystals,” Phys. Rev. B 79(4), 045124 (2009).
[CrossRef]

M. Botey, M. Maymó, A. Molinos-Gómez, L. A. Dorado, R. A. Depine, G. Lozano, A. Mihi, H. Míguez, and J. Martorell, “Second Harmonic Generation at the High Energy Range in a Nonlinear Opal Film,” Opt. Express 17, 12210 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12210 .
[CrossRef] [PubMed]

G. Lozano, L. A. Dorado, D. Schinca, R. A. Depine, and H. Míguez, “Optical analysis of the fine crystalline structure of artificial opal films,” Langmuir 25(22), 12860–12864 (2009).
[CrossRef] [PubMed]

L. A. Dorado, R. A. Depine, D. Schinca, G. Lozano, and H. Míguez, “Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals,” Phys. Rev. B 78(7), 075102 (2008).
[CrossRef]

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Interplay between crystal-size and disorder in the high-energy optical response of photonic crystals slabs,” Phys. Rev. B 76(24), 245103 (2007).
[CrossRef]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Physical origin of the high energy optical response of three dimensional photonic crystals,” Opt. Express 15(26), 17754–17760 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17754 .
[CrossRef] [PubMed]

Engelen, R. J. P.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
[CrossRef] [PubMed]

Fedyanin, A. A.

A. A. Fedyanin, O. Aktsipetrov, D. A. Kurdyukov, V. G. Golubev, and M. Inoue, “Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals,” Appl. Phys. Lett. 87(15), 151111 (2005).
[CrossRef]

Galisteo-López, J. F.

Galli, M.

García-Santamaría, F.

F. García-Santamaría and P. V. Braun, “Are artificial opals non-close-packed fcc structures?” Appl. Phys. Lett. 90(24), 241905 (2007).
[CrossRef]

Golubev, V. G.

A. A. Fedyanin, O. Aktsipetrov, D. A. Kurdyukov, V. G. Golubev, and M. Inoue, “Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals,” Appl. Phys. Lett. 87(15), 151111 (2005).
[CrossRef]

Hu, X.-H.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Inoue, M.

A. A. Fedyanin, O. Aktsipetrov, D. A. Kurdyukov, V. G. Golubev, and M. Inoue, “Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals,” Appl. Phys. Lett. 87(15), 151111 (2005).
[CrossRef]

Jacobs, K. M.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Karathanos, V.

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter 4(36), 7389–7400 (1992).
[CrossRef]

Kuipers, L.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
[CrossRef] [PubMed]

Kurdyukov, D. A.

A. A. Fedyanin, O. Aktsipetrov, D. A. Kurdyukov, V. G. Golubev, and M. Inoue, “Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals,” Appl. Phys. Lett. 87(15), 151111 (2005).
[CrossRef]

López, C.

Lozano, G.

M. Botey, M. Maymó, A. Molinos-Gómez, L. A. Dorado, R. A. Depine, G. Lozano, A. Mihi, H. Míguez, and J. Martorell, “Second Harmonic Generation at the High Energy Range in a Nonlinear Opal Film,” Opt. Express 17, 12210 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12210 .
[CrossRef] [PubMed]

G. Lozano, L. A. Dorado, D. Schinca, R. A. Depine, and H. Míguez, “Optical analysis of the fine crystalline structure of artificial opal films,” Langmuir 25(22), 12860–12864 (2009).
[CrossRef] [PubMed]

L. A. Dorado, R. A. Depine, D. Schinca, G. Lozano, and H. Míguez, “Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals,” Phys. Rev. B 78(7), 075102 (2008).
[CrossRef]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Physical origin of the high energy optical response of three dimensional photonic crystals,” Opt. Express 15(26), 17754–17760 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17754 .
[CrossRef] [PubMed]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Interplay between crystal-size and disorder in the high-energy optical response of photonic crystals slabs,” Phys. Rev. B 76(24), 245103 (2007).
[CrossRef]

Lozano, G. S.

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

Lu, J. Q.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Ma, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Martorell, J.

Maymó, M.

Míguez, H.

M. Botey, M. Maymó, A. Molinos-Gómez, L. A. Dorado, R. A. Depine, G. Lozano, A. Mihi, H. Míguez, and J. Martorell, “Second Harmonic Generation at the High Energy Range in a Nonlinear Opal Film,” Opt. Express 17, 12210 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12210 .
[CrossRef] [PubMed]

G. Lozano, L. A. Dorado, D. Schinca, R. A. Depine, and H. Míguez, “Optical analysis of the fine crystalline structure of artificial opal films,” Langmuir 25(22), 12860–12864 (2009).
[CrossRef] [PubMed]

L. A. Dorado, R. A. Depine, D. Schinca, G. Lozano, and H. Míguez, “Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals,” Phys. Rev. B 78(7), 075102 (2008).
[CrossRef]

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Interplay between crystal-size and disorder in the high-energy optical response of photonic crystals slabs,” Phys. Rev. B 76(24), 245103 (2007).
[CrossRef]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Physical origin of the high energy optical response of three dimensional photonic crystals,” Opt. Express 15(26), 17754–17760 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17754 .
[CrossRef] [PubMed]

Mihi, A.

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter 4(36), 7389–7400 (1992).
[CrossRef]

A. Modinos, “Scattering of electromagnetic waves by a plane of spheres-formalism,” Physica A 141(2-3), 575–588 (1987).
[CrossRef]

Molinos-Gómez, A.

Mori, D.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
[CrossRef] [PubMed]

Mortensen, N. A.

J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[CrossRef]

Noh, H.

H. Noh, M. Scharrer, M. A. Anderson, R. P. H. Chang, and H. Cao, “Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal,” Phys. Rev. B 77(11), 115136 (2008).
[CrossRef]

Ohtaka, K.

K. Ohtaka, “Scattering theory of low-energy photon diffraction,” J. Phys. C: Solid State 13(4), 667–680 (1980).
[CrossRef]

Patrini, M.

Pedersen, J. G.

J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[CrossRef]

Scharrer, M.

H. Noh, M. Scharrer, M. A. Anderson, R. P. H. Chang, and H. Cao, “Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal,” Phys. Rev. B 77(11), 115136 (2008).
[CrossRef]

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[CrossRef]

Schinca, D.

G. Lozano, L. A. Dorado, D. Schinca, R. A. Depine, and H. Míguez, “Optical analysis of the fine crystalline structure of artificial opal films,” Langmuir 25(22), 12860–12864 (2009).
[CrossRef] [PubMed]

L. A. Dorado, R. A. Depine, D. Schinca, G. Lozano, and H. Míguez, “Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals,” Phys. Rev. B 78(7), 075102 (2008).
[CrossRef]

Stefanou, N.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter 4(36), 7389–7400 (1992).
[CrossRef]

Wu, X.

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[CrossRef]

Xiao, S.

J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[CrossRef]

Yamilov, A.

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[CrossRef]

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

Appl. Phys. B

M. Botey, M. Maymó, and J. Martorell, “Band-structure determination for finite 3-D photonic crystals,” Appl. Phys. B 81(2-3), 277–281 (2005).
[CrossRef]

Appl. Phys. Lett.

A. A. Fedyanin, O. Aktsipetrov, D. A. Kurdyukov, V. G. Golubev, and M. Inoue, “Nonlinear diffraction and second-harmonic generation enhancement in silicon-opal photonic crystals,” Appl. Phys. Lett. 87(15), 151111 (2005).
[CrossRef]

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88(20), 201103 (2006).
[CrossRef]

F. García-Santamaría and P. V. Braun, “Are artificial opals non-close-packed fcc structures?” Appl. Phys. Lett. 90(24), 241905 (2007).
[CrossRef]

J. F. Galisteo-López, M. Galli, A. Balestreri, L. C. Andreani, and C. López, “Optical response of artificial opals oriented along the ΓX direction,” Appl. Phys. Lett. 90(23), 231112 (2007).
[CrossRef]

Comput. Phys. Commun.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: Frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[CrossRef]

J. Mater. Chem.

G. S. Lozano, L. A. Dorado, R. A. Depine, and H. Míguez, “Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films,” J. Mater. Chem. 19(2), 185–190 (2008).
[CrossRef]

J. Phys. C: Solid State

K. Ohtaka, “Scattering theory of low-energy photon diffraction,” J. Phys. C: Solid State 13(4), 667–680 (1980).
[CrossRef]

J. Phys. Condens. Matter

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter 4(36), 7389–7400 (1992).
[CrossRef]

Langmuir

G. Lozano, L. A. Dorado, D. Schinca, R. A. Depine, and H. Míguez, “Optical analysis of the fine crystalline structure of artificial opal films,” Langmuir 25(22), 12860–12864 (2009).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
[CrossRef]

Phys. Rev. B

L. A. Dorado and R. A. Depine, “Modeling of disorder effects and optical extinction in three-dimensional photonic crystals,” Phys. Rev. B 79(4), 045124 (2009).
[CrossRef]

L. A. Dorado, R. A. Depine, D. Schinca, G. Lozano, and H. Míguez, “Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals,” Phys. Rev. B 78(7), 075102 (2008).
[CrossRef]

H. Noh, M. Scharrer, M. A. Anderson, R. P. H. Chang, and H. Cao, “Photoluminescence modification by a high-order photonic band with abnormal dispersion in ZnO inverse opal,” Phys. Rev. B 77(11), 115136 (2008).
[CrossRef]

J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[CrossRef]

L. A. Dorado, R. A. Depine, G. Lozano, and H. Míguez, “Interplay between crystal-size and disorder in the high-energy optical response of photonic crystals slabs,” Phys. Rev. B 76(24), 245103 (2007).
[CrossRef]

Phys. Rev. Lett.

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
[CrossRef] [PubMed]

Physica A

A. Modinos, “Scattering of electromagnetic waves by a plane of spheres-formalism,” Physica A 141(2-3), 575–588 (1987).
[CrossRef]

Other

K. Sakoda, “Optical properties of photonic crystals,” Springer-Verlag, Berlin (2005).

M. Botey, L. A. Dorado, R. A. Depine, G. Lozano, H. Miguez, and J. Martorell, “Anomalous group velocity in a 3D photonic nanostructure,” in Conference on Lasers and Electro-Optics Europe/European Quantum Electronics Conference, Technical Digest (CD), (Optical Society of America, 2009), paper CK3.2Tue.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

High-energy band structure in the ΓL direction of an ideal close-packed fcc opal made of polystyrene spheres (εs =2.5) in air (ε=1). Energy is expressed in reduced frequency units, lattice parameter, a, over wavelength in vacuum, λ. The shaded region corresponds to the considered high energy range of the spectrum, 1.05 ≤ a/λ ≤1.35.

Fig. 2
Fig. 2

a) Reflected modes for a glass supported opal made of 10 [111] layers, taking εsph =2.5+0.1i for the dielectric spheres and εg =2.34 for the glass substrate. b) Transmitted modes for the same structure. The vertical dotted lines corresponds to the diffraction cut-off for the six lower order diffracted modes and the next six respectively. All curves are plotted as a function of frequency in reduced, a/λ, units.

Fig. 3
Fig. 3

a) Phase delay, in units of π, introduced to a forwardly transmitted beam propagating along the [111] direction of a 10 [111]-layers opal made of spheres, for increasing values of the dielectric contrast. Τhe imaginary part of the sphere-dielectric function is kept as constant. b) Corresponding group indexes. All curves are plotted as a function of frequency in reduced, a/λ, units.

Fig. 4
Fig. 4

Phase delay divided by the number of [111] planes, in units of π, introduced to a forwardly transmitted field propagating in the ΓL of the fcc glass supported (εg =2.34) structure. All phases are plotted as a function of frequency in reduced, a/λ, units. Nanospheres dielectric function εsph =2.5+0.04i. The number of [111] planes is indicated in the inset of the figure.

Fig. 5
Fig. 5

Group index for different opal thicknesses; all plotted as a function of frequency in reduced units. Nanospheres dielectric function εsph =2.5+0.04i. The number of [111] planes is indicated in the inset of the figure.

Fig. 6
Fig. 6

Calculated group index for different opal thickness as a function of reduced frequency in the A region. The graphic inset corresponds to the number of [111] layers. The dielectric constant of the spheres and the glass support are εshp =2.6+0.0575i and εg =2.34, respectively [21].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a λ 2 n l 2 + ( 2 m + l ) 2 3
n g = c v g = c L θ ω

Metrics