Abstract

A non-contact, non-destructive technique for estimating the dye concentration of a tablet is presented. These measurements are performed by an optoelectronic system capable for fast acquisition of two-dimensional distribution of reflection spectra with high spatial resolution by using a subspace vector model of surface reflection. Vector components representing compressed spectral data are used directly (without reconstruction of the reflection spectra) for discrimination of tablets with small dye-concentration difference. Analysis of the data obtained after tablet illumination by 7 mutually orthogonal spectral functions allows us to find a single optimal spectral function which is enough for estimating the dye concentration. Using the optimal spectral function, either the mean concentration of riboflavin or distribution of the concentration over the tablet surface can be evaluated with high rate which ensures application of the technique for online quality control of each tablet.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Barra, A. Ullrich, F. Falson-Rieg, and E. Doelker, “Color as an indicator of the organization and compactibility of binary powder mixes,” Pharm. Dev. Technol. 5(1), 87–94 (2000).
    [CrossRef] [PubMed]
  2. S. Vemuri, C. Taracatac, and R. Skluzacek, “Color stability of ascorbic acid tablets measured by tristimulus colorimeter,” Drug Dev. Ind. Pharm. 11(1), 207–222 (1985).
    [CrossRef]
  3. G. Stark, J. P. Fawcett, I. G. Tucker, and I. L. Weatherall, “Instrumental evaluation of color of solid dosage forms during stability testing,” Int. J. Pharm. 143(1), 93–100 (1996).
    [CrossRef]
  4. J. Berberich, K.-H. Dee, Y. Hayauchi, and C. Pörtner, “A new method to determine discoloration kinetics of uncoated white tablets occurring during stability testing-an application of instrumental color measurement in the development pharmaceutics,” Int. J. Pharm. 234(1-2), 55–66 (2002).
    [CrossRef] [PubMed]
  5. P. D. Oram and J. Strine, “Color measurement of a solid active pharmaceutical ingredient as an aid to identifying key process parameters,” J. Pharm. Biomed. Anal. 40(4), 1021–1024 (2006).
    [CrossRef]
  6. J. Subert and J. Cizmárik, “Application of instrumental colour measurement in development and quality control of drugs and pharmaceutical excipients,” Pharmazie 63(5), 331–336 (2008).
    [PubMed]
  7. M. Bornstein, “Color and its measurements,” J. Soc. Cosmet. Chem. 19, 649–667 (1968).
  8. A. A. Kamshilin and E. Nippolainen, “Chromatic discrimination by use of computer controlled set of light-emitting diodes,” Opt. Express 15(23), 15093–15100 (2007).
    [CrossRef] [PubMed]
  9. L. T. Maloney and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3(1), 29–33 (1986).
    [CrossRef] [PubMed]
  10. J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).
  11. Munsell Book of Color, matte edition, (Munsell Color, Baltimore, Md., 1976).
  12. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6(2), 318–322 (1989).
    [CrossRef]
  13. T. Jaaskelainen, J. P. S. Parkkinen, and S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7(4), 725–730 (1990).
    [CrossRef]
  14. D. H. Marimont and B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9(11), 1905–1913 (1992).
    [CrossRef] [PubMed]
  15. H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, “PhotochemCAD: A computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).
  16. L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007).
    [CrossRef]
  17. L. Fauch, V. Y. Teplov, E. Nippolainen, and A. A. Kamshilin, “Fast acquisition of reflectance spectra using wide spectral lines,” Opt. Rev. 16(4), 472–475 (2009).
    [CrossRef]

2009

L. Fauch, V. Y. Teplov, E. Nippolainen, and A. A. Kamshilin, “Fast acquisition of reflectance spectra using wide spectral lines,” Opt. Rev. 16(4), 472–475 (2009).
[CrossRef]

2008

J. Subert and J. Cizmárik, “Application of instrumental colour measurement in development and quality control of drugs and pharmaceutical excipients,” Pharmazie 63(5), 331–336 (2008).
[PubMed]

2007

A. A. Kamshilin and E. Nippolainen, “Chromatic discrimination by use of computer controlled set of light-emitting diodes,” Opt. Express 15(23), 15093–15100 (2007).
[CrossRef] [PubMed]

L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007).
[CrossRef]

2006

P. D. Oram and J. Strine, “Color measurement of a solid active pharmaceutical ingredient as an aid to identifying key process parameters,” J. Pharm. Biomed. Anal. 40(4), 1021–1024 (2006).
[CrossRef]

2002

J. Berberich, K.-H. Dee, Y. Hayauchi, and C. Pörtner, “A new method to determine discoloration kinetics of uncoated white tablets occurring during stability testing-an application of instrumental color measurement in the development pharmaceutics,” Int. J. Pharm. 234(1-2), 55–66 (2002).
[CrossRef] [PubMed]

2000

J. Barra, A. Ullrich, F. Falson-Rieg, and E. Doelker, “Color as an indicator of the organization and compactibility of binary powder mixes,” Pharm. Dev. Technol. 5(1), 87–94 (2000).
[CrossRef] [PubMed]

1998

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, “PhotochemCAD: A computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

1996

G. Stark, J. P. Fawcett, I. G. Tucker, and I. L. Weatherall, “Instrumental evaluation of color of solid dosage forms during stability testing,” Int. J. Pharm. 143(1), 93–100 (1996).
[CrossRef]

1992

1990

1989

1986

1985

S. Vemuri, C. Taracatac, and R. Skluzacek, “Color stability of ascorbic acid tablets measured by tristimulus colorimeter,” Drug Dev. Ind. Pharm. 11(1), 207–222 (1985).
[CrossRef]

1968

M. Bornstein, “Color and its measurements,” J. Soc. Cosmet. Chem. 19, 649–667 (1968).

1964

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).

Barra, J.

J. Barra, A. Ullrich, F. Falson-Rieg, and E. Doelker, “Color as an indicator of the organization and compactibility of binary powder mixes,” Pharm. Dev. Technol. 5(1), 87–94 (2000).
[CrossRef] [PubMed]

Berberich, J.

J. Berberich, K.-H. Dee, Y. Hayauchi, and C. Pörtner, “A new method to determine discoloration kinetics of uncoated white tablets occurring during stability testing-an application of instrumental color measurement in the development pharmaceutics,” Int. J. Pharm. 234(1-2), 55–66 (2002).
[CrossRef] [PubMed]

Bornstein, M.

M. Bornstein, “Color and its measurements,” J. Soc. Cosmet. Chem. 19, 649–667 (1968).

Cizmárik, J.

J. Subert and J. Cizmárik, “Application of instrumental colour measurement in development and quality control of drugs and pharmaceutical excipients,” Pharmazie 63(5), 331–336 (2008).
[PubMed]

Cohen, J.

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).

Corkan, A.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, “PhotochemCAD: A computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Dee, K.-H.

J. Berberich, K.-H. Dee, Y. Hayauchi, and C. Pörtner, “A new method to determine discoloration kinetics of uncoated white tablets occurring during stability testing-an application of instrumental color measurement in the development pharmaceutics,” Int. J. Pharm. 234(1-2), 55–66 (2002).
[CrossRef] [PubMed]

Doelker, E.

J. Barra, A. Ullrich, F. Falson-Rieg, and E. Doelker, “Color as an indicator of the organization and compactibility of binary powder mixes,” Pharm. Dev. Technol. 5(1), 87–94 (2000).
[CrossRef] [PubMed]

Du, H.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, “PhotochemCAD: A computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Falson-Rieg, F.

J. Barra, A. Ullrich, F. Falson-Rieg, and E. Doelker, “Color as an indicator of the organization and compactibility of binary powder mixes,” Pharm. Dev. Technol. 5(1), 87–94 (2000).
[CrossRef] [PubMed]

Fauch, L.

L. Fauch, V. Y. Teplov, E. Nippolainen, and A. A. Kamshilin, “Fast acquisition of reflectance spectra using wide spectral lines,” Opt. Rev. 16(4), 472–475 (2009).
[CrossRef]

L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007).
[CrossRef]

Fawcett, J. P.

G. Stark, J. P. Fawcett, I. G. Tucker, and I. L. Weatherall, “Instrumental evaluation of color of solid dosage forms during stability testing,” Int. J. Pharm. 143(1), 93–100 (1996).
[CrossRef]

Fuh, R. A.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, “PhotochemCAD: A computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Hallikainen, J.

Hauta-Kasari, M.

L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007).
[CrossRef]

Hayauchi, Y.

J. Berberich, K.-H. Dee, Y. Hayauchi, and C. Pörtner, “A new method to determine discoloration kinetics of uncoated white tablets occurring during stability testing-an application of instrumental color measurement in the development pharmaceutics,” Int. J. Pharm. 234(1-2), 55–66 (2002).
[CrossRef] [PubMed]

Jaaskelainen, T.

L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007).
[CrossRef]

T. Jaaskelainen, J. P. S. Parkkinen, and S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7(4), 725–730 (1990).
[CrossRef]

J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6(2), 318–322 (1989).
[CrossRef]

Kamshilin, A. A.

L. Fauch, V. Y. Teplov, E. Nippolainen, and A. A. Kamshilin, “Fast acquisition of reflectance spectra using wide spectral lines,” Opt. Rev. 16(4), 472–475 (2009).
[CrossRef]

L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007).
[CrossRef]

A. A. Kamshilin and E. Nippolainen, “Chromatic discrimination by use of computer controlled set of light-emitting diodes,” Opt. Express 15(23), 15093–15100 (2007).
[CrossRef] [PubMed]

Li, J.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, “PhotochemCAD: A computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Lindsey, J. S.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, “PhotochemCAD: A computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Maloney, L. T.

Marimont, D. H.

Nippolainen, E.

L. Fauch, V. Y. Teplov, E. Nippolainen, and A. A. Kamshilin, “Fast acquisition of reflectance spectra using wide spectral lines,” Opt. Rev. 16(4), 472–475 (2009).
[CrossRef]

L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007).
[CrossRef]

A. A. Kamshilin and E. Nippolainen, “Chromatic discrimination by use of computer controlled set of light-emitting diodes,” Opt. Express 15(23), 15093–15100 (2007).
[CrossRef] [PubMed]

Oram, P. D.

P. D. Oram and J. Strine, “Color measurement of a solid active pharmaceutical ingredient as an aid to identifying key process parameters,” J. Pharm. Biomed. Anal. 40(4), 1021–1024 (2006).
[CrossRef]

Parkkinen, J. P. S.

L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007).
[CrossRef]

T. Jaaskelainen, J. P. S. Parkkinen, and S. Toyooka, “Vector-subspace model for color representation,” J. Opt. Soc. Am. A 7(4), 725–730 (1990).
[CrossRef]

J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6(2), 318–322 (1989).
[CrossRef]

Pörtner, C.

J. Berberich, K.-H. Dee, Y. Hayauchi, and C. Pörtner, “A new method to determine discoloration kinetics of uncoated white tablets occurring during stability testing-an application of instrumental color measurement in the development pharmaceutics,” Int. J. Pharm. 234(1-2), 55–66 (2002).
[CrossRef] [PubMed]

Skluzacek, R.

S. Vemuri, C. Taracatac, and R. Skluzacek, “Color stability of ascorbic acid tablets measured by tristimulus colorimeter,” Drug Dev. Ind. Pharm. 11(1), 207–222 (1985).
[CrossRef]

Stark, G.

G. Stark, J. P. Fawcett, I. G. Tucker, and I. L. Weatherall, “Instrumental evaluation of color of solid dosage forms during stability testing,” Int. J. Pharm. 143(1), 93–100 (1996).
[CrossRef]

Strine, J.

P. D. Oram and J. Strine, “Color measurement of a solid active pharmaceutical ingredient as an aid to identifying key process parameters,” J. Pharm. Biomed. Anal. 40(4), 1021–1024 (2006).
[CrossRef]

Subert, J.

J. Subert and J. Cizmárik, “Application of instrumental colour measurement in development and quality control of drugs and pharmaceutical excipients,” Pharmazie 63(5), 331–336 (2008).
[PubMed]

Taracatac, C.

S. Vemuri, C. Taracatac, and R. Skluzacek, “Color stability of ascorbic acid tablets measured by tristimulus colorimeter,” Drug Dev. Ind. Pharm. 11(1), 207–222 (1985).
[CrossRef]

Teplov, V. Y.

L. Fauch, V. Y. Teplov, E. Nippolainen, and A. A. Kamshilin, “Fast acquisition of reflectance spectra using wide spectral lines,” Opt. Rev. 16(4), 472–475 (2009).
[CrossRef]

Toyooka, S.

Tucker, I. G.

G. Stark, J. P. Fawcett, I. G. Tucker, and I. L. Weatherall, “Instrumental evaluation of color of solid dosage forms during stability testing,” Int. J. Pharm. 143(1), 93–100 (1996).
[CrossRef]

Ullrich, A.

J. Barra, A. Ullrich, F. Falson-Rieg, and E. Doelker, “Color as an indicator of the organization and compactibility of binary powder mixes,” Pharm. Dev. Technol. 5(1), 87–94 (2000).
[CrossRef] [PubMed]

Vemuri, S.

S. Vemuri, C. Taracatac, and R. Skluzacek, “Color stability of ascorbic acid tablets measured by tristimulus colorimeter,” Drug Dev. Ind. Pharm. 11(1), 207–222 (1985).
[CrossRef]

Wandell, B. A.

Weatherall, I. L.

G. Stark, J. P. Fawcett, I. G. Tucker, and I. L. Weatherall, “Instrumental evaluation of color of solid dosage forms during stability testing,” Int. J. Pharm. 143(1), 93–100 (1996).
[CrossRef]

Drug Dev. Ind. Pharm.

S. Vemuri, C. Taracatac, and R. Skluzacek, “Color stability of ascorbic acid tablets measured by tristimulus colorimeter,” Drug Dev. Ind. Pharm. 11(1), 207–222 (1985).
[CrossRef]

Int. J. Pharm.

G. Stark, J. P. Fawcett, I. G. Tucker, and I. L. Weatherall, “Instrumental evaluation of color of solid dosage forms during stability testing,” Int. J. Pharm. 143(1), 93–100 (1996).
[CrossRef]

J. Berberich, K.-H. Dee, Y. Hayauchi, and C. Pörtner, “A new method to determine discoloration kinetics of uncoated white tablets occurring during stability testing-an application of instrumental color measurement in the development pharmaceutics,” Int. J. Pharm. 234(1-2), 55–66 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Pharm. Biomed. Anal.

P. D. Oram and J. Strine, “Color measurement of a solid active pharmaceutical ingredient as an aid to identifying key process parameters,” J. Pharm. Biomed. Anal. 40(4), 1021–1024 (2006).
[CrossRef]

J. Soc. Cosmet. Chem.

M. Bornstein, “Color and its measurements,” J. Soc. Cosmet. Chem. 19, 649–667 (1968).

Opt. Express

Opt. Rev.

L. Fauch, E. Nippolainen, A. A. Kamshilin, M. Hauta-Kasari, J. P. S. Parkkinen, and T. Jaaskelainen, “Optical implementation of precise color classification using computer controlled set of light emitting diodes,” Opt. Rev. 14(4), 243–245 (2007).
[CrossRef]

L. Fauch, V. Y. Teplov, E. Nippolainen, and A. A. Kamshilin, “Fast acquisition of reflectance spectra using wide spectral lines,” Opt. Rev. 16(4), 472–475 (2009).
[CrossRef]

Pharm. Dev. Technol.

J. Barra, A. Ullrich, F. Falson-Rieg, and E. Doelker, “Color as an indicator of the organization and compactibility of binary powder mixes,” Pharm. Dev. Technol. 5(1), 87–94 (2000).
[CrossRef] [PubMed]

Pharmazie

J. Subert and J. Cizmárik, “Application of instrumental colour measurement in development and quality control of drugs and pharmaceutical excipients,” Pharmazie 63(5), 331–336 (2008).
[PubMed]

Photochem. Photobiol.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, “PhotochemCAD: A computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Psychon. Sci.

J. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychon. Sci. 1, 369–370 (1964).

Other

Munsell Book of Color, matte edition, (Munsell Color, Baltimore, Md., 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Seven spectral functions Sk (λ) computed from the measured Munsell color spectral data in Ref [12].

Fig. 2
Fig. 2

Principle scheme of the system for fast acqusition of 2D distribution of the reflectance spectra.

Fig. 3
Fig. 3

(a) One of the spectral functions (third of seven) calculated in Ref [12]. for the reflectance spectra of color chips from the Munsell book. (b) Output power of the LEDs from the thick fiber and their bandwidths as a function of the wavelength.

Fig. 4
Fig. 4

Images of two tablets with maximal and minimal concentrations of riboflavin (3.5% in the left image and 6% in the right image) recorded under the day-light illumination.

Fig. 5
Fig. 5

Measured concentration of riboflavin in tablets as a function of their real concentration. Pluses are riboflavin concentrations measured optically by using tablets illumination with 7 orthogonal spectral functions, filled squares are concentrations measured by illuminating with the optimized spectral function of D(λ).

Fig. 6
Fig. 6

The spectral function D(λ) used for optimized illumination of tablets to measure the riboflavin concentration.

Fig. 7
Fig. 7

Spatial distribution of riboflavin in two tablets with minimum and maximum concentrations of 3.5% (left) and 6% (right). The riboflavin is marked by black points, while the lactose – by white points. (a) – direct measurement of the tablet by their illumination with the optimized spectral function, (b) – computer simulation of the two-step optimal illumination by using 13 frames recorded under illumination by the set of 7 orthogonal spectral functions.

Tables (1)

Tables Icon

Table 1 Riboflavin concentrations of the powder blends

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ k ( x , y ) = λ 1 λ 2 r ( x , y , λ ) S k ( λ ) d λ
σ ¯ k = 1 A S A S σ k ( x , y ) d S ,
ν k = σ ¯ k k = 1 7 σ ¯ k 2 .
ν k = A k η + B k .
η = k = 1 7 A k ( ν k B k ) k = 1 7 A k 2
η = C 0 + C 1 k = 1 7 A k ν k ,
C 0 = k = 1 7 A k B k k = 1 7 A k 2 ; C 1 = 1 k = 1 7 A k 2 .
η = C 0 + c n o r m C 1 λ 1 λ 2 R ( λ ) D ( λ ) .
D ( λ ) = k = 1 7 A k S k ( λ ) .
D + ( λ ) = { D ( λ ) i f D ( λ ) 0 0 i f D ( λ ) < 0   and  D ( λ ) = { 0 i f D ( λ ) 0 D ( λ ) i f D ( λ ) < 0 ,
σ o p t + = λ 1 λ 2 R ( λ ) D + ( λ ) d λ  and  σ o p t = λ 1 λ 2 R ( λ ) D ( λ ) d λ .
ν o p t = σ o p t + σ o p t σ o p t + + σ o p t .
ν o p t = a η + b .

Metrics