Abstract

We report on the fabrication of planar and ridge waveguides in lithium niobate by proton exchange combined with oxygen ion implantation. The implanted energy ranges from 600 to 1400 keV with a dose of 1×1015 ions/cm2. The modes in proton exchanged waveguide can be modulated by O ion implantation. There are different damage profiles in proton-exchanged and ion-implanted waveguides in Rutherford backscattering/channeling spectra. The refractive index profile in single-mode waveguide in lithium niobate has been obtained based on Intensity Calculation Method. Also ridge waveguide was fabricated on the basis of planar waveguide by Ar ion beam etching. The measured near-field intensity distributions of the ridge waveguide modes show a reasonable agreement with the simulated ones. The estimated propagation loss was ~2.2 dB/cm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
    [CrossRef]
  2. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101–081129 (2009).
    [CrossRef]
  3. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115–161117 (2005).
    [CrossRef]
  4. G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
    [CrossRef]
  5. F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 microm,” Opt. Express 16(20), 16209–16214 (2008).
    [CrossRef] [PubMed]
  6. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908–161910 (2008).
    [CrossRef]
  7. E. Smirnov, C. E. Rüter, D. Kip, Y. V. Kartashov, and L. Torner, “Observation of higher-order solitons in defocusing waveguide arrays,” Opt. Lett. 32(13), 1950–1952 (2007).
    [CrossRef] [PubMed]
  8. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101–241103 (2005).
    [CrossRef]
  9. A. Sjöberg, G. Arvidsson, and A. A. Lipovskii, “Characterization of waveguides fabricated by titanium diffusion in magnesium-doped lithium niobate,” J. Opt. Soc. Am. B 5(2), 285–291 (1988).
    [CrossRef]
  10. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
    [CrossRef]
  11. G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
    [CrossRef]
  12. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
    [CrossRef] [PubMed]
  13. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109–111111 (2006).
    [CrossRef]
  14. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation, (Cambridge Univ. Press, Cambridge, 1994).
  15. N.-N. Dong, F. Chen, and D. Jaque, “Carbon ion implanted Nd:MgO:LiNbO(3) optical channel waveguides: an intermediate step between light and heavy ion implanted waveguides,” Opt. Express 18(6), 5951–5956 (2010).
    [CrossRef] [PubMed]
  16. J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005).
    [CrossRef]
  17. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
    [CrossRef]
  18. U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, and W. Sohler, “Integrated optical proton exchanged TM-pass polarizers in LiNbO3: modelling and experimental performance,” L. Technol. 13(8), 1750–1759 (1995).
    [CrossRef]
  19. F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
    [CrossRef]
  20. E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 156–159 (1990).
    [CrossRef]
  21. V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Sec. B 168(4), 498–502 (2000).
    [CrossRef]
  22. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
    [CrossRef]
  23. H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
    [CrossRef]
  24. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).
  25. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15(1), 151–155 (1976).
    [CrossRef] [PubMed]
  26. X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
    [CrossRef]
  27. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [CrossRef]
  28. L. C. Feldman, J. W. Mayer, and S. T. Picraux, Materials Analysis by Ion Channeling, (Academic Press, New York, 1982).
  29. W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, (Academic Press, New York, 1978).
  30. P. J. F. Ziegler, Computer code SRIM ( http://www.srim.org ).
  31. X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
    [CrossRef]
  32. A. Ródenas, “L. M. maestro, M. O. Ramírez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattices changes in femtosecond laser inscribed Nb3+: MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110–013116 (2009).
    [CrossRef]
  33. Rsoft Design Group, Computer software BeamPROP version 8.0. ( http://www.rsoftdesign.com ).

2010 (1)

2009 (2)

A. Ródenas, “L. M. maestro, M. O. Ramírez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattices changes in femtosecond laser inscribed Nb3+: MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110–013116 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101–081129 (2009).
[CrossRef]

2008 (3)

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908–161910 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 microm,” Opt. Express 16(20), 16209–16214 (2008).
[CrossRef] [PubMed]

2007 (4)

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

E. Smirnov, C. E. Rüter, D. Kip, Y. V. Kartashov, and L. Torner, “Observation of higher-order solitons in defocusing waveguide arrays,” Opt. Lett. 32(13), 1950–1952 (2007).
[CrossRef] [PubMed]

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007).
[CrossRef] [PubMed]

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

2006 (1)

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109–111111 (2006).
[CrossRef]

2005 (3)

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005).
[CrossRef]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115–161117 (2005).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101–241103 (2005).
[CrossRef]

2004 (2)

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[CrossRef]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[CrossRef]

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

2001 (1)

2000 (1)

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Sec. B 168(4), 498–502 (2000).
[CrossRef]

1995 (2)

U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, and W. Sohler, “Integrated optical proton exchanged TM-pass polarizers in LiNbO3: modelling and experimental performance,” L. Technol. 13(8), 1750–1759 (1995).
[CrossRef]

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

1994 (1)

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[CrossRef]

1990 (1)

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 156–159 (1990).
[CrossRef]

1988 (1)

1986 (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

1976 (1)

Agullo-Lopez, F.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005).
[CrossRef]

Åhlfeldt, H.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[CrossRef]

Arvidsson, G.

Atuchin, V. V.

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Sec. B 168(4), 498–502 (2000).
[CrossRef]

Baida, F. I.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101–241103 (2005).
[CrossRef]

Bazzan, M.

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Bernal, M.-P.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101–241103 (2005).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Blanton, T.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[CrossRef]

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109–111111 (2006).
[CrossRef]

Braunstein, G.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[CrossRef]

Busacca, A. C.

Caballero, O.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005).
[CrossRef]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109–111111 (2006).
[CrossRef]

Cantelar, E.

Cerutti, A.

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).

Chen, F.

N.-N. Dong, F. Chen, and D. Jaque, “Carbon ion implanted Nd:MgO:LiNbO(3) optical channel waveguides: an intermediate step between light and heavy ion implanted waveguides,” Opt. Express 18(6), 5951–5956 (2010).
[CrossRef] [PubMed]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101–081129 (2009).
[CrossRef]

F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 microm,” Opt. Express 16(20), 16209–16214 (2008).
[CrossRef] [PubMed]

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908–161910 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef]

Chiarini, M.

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Cino, A.

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Courjal, N.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101–241103 (2005).
[CrossRef]

Cussó, F.

Dong, N.-N.

Foad, M. A.

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 156–159 (1990).
[CrossRef]

Fu, G.

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

Garcia, G.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005).
[CrossRef]

Garcia-Cabanes, A.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005).
[CrossRef]

Garcia-Navarro, A.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005).
[CrossRef]

Glavas, E.

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 156–159 (1990).
[CrossRef]

Grusemann, U.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[CrossRef]

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Heidrich, P. F.

Hempelmann, U.

U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, and W. Sohler, “Integrated optical proton exchanged TM-pass polarizers in LiNbO3: modelling and experimental performance,” L. Technol. 13(8), 1750–1759 (1995).
[CrossRef]

Herrmann, H.

U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, and W. Sohler, “Integrated optical proton exchanged TM-pass polarizers in LiNbO3: modelling and experimental performance,” L. Technol. 13(8), 1750–1759 (1995).
[CrossRef]

Hu, H.

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

Jaque, D.

Kar, A. K.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109–111111 (2006).
[CrossRef]

Kartashov, Y. V.

Kip, D.

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).

Lee, S. T.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[CrossRef]

Lifante, G.

Lipovskii, A. A.

Liu, H.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

Liu, X.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

Lu, F.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Mrozynski, G.

U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, and W. Sohler, “Integrated optical proton exchanged TM-pass polarizers in LiNbO3: modelling and experimental performance,” L. Technol. 13(8), 1750–1759 (1995).
[CrossRef]

Olivares, J.

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005).
[CrossRef]

Opfermann, T.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[CrossRef]

Paz-Pujalt, G. R.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[CrossRef]

Pennestr, G.

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

Rabiei, P.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115–161117 (2005).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109–111111 (2006).
[CrossRef]

Reimann, V.

U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, and W. Sohler, “Integrated optical proton exchanged TM-pass polarizers in LiNbO3: modelling and experimental performance,” L. Technol. 13(8), 1750–1759 (1995).
[CrossRef]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

Ródenas, A.

A. Ródenas, “L. M. maestro, M. O. Ramírez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattices changes in femtosecond laser inscribed Nb3+: MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110–013116 (2009).
[CrossRef]

F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 microm,” Opt. Express 16(20), 16209–16214 (2008).
[CrossRef] [PubMed]

Rodríguez, E. M.

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101–241103 (2005).
[CrossRef]

Ruske, J. P.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[CrossRef]

Rüter, C. E.

Sada, C.

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Salter, L. M.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[CrossRef]

Sanseverino, S. R.

Schrempel, F.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[CrossRef]

Shen, D.-Y.

Shi, B.-R.

Sjöberg, A.

Smirnov, E.

Sohler, W.

U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, and W. Sohler, “Integrated optical proton exchanged TM-pass polarizers in LiNbO3: modelling and experimental performance,” L. Technol. 13(8), 1750–1759 (1995).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115–161117 (2005).
[CrossRef]

Tan, Y.

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908–161910 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

F. Chen, Y. Tan, and A. Ródenas, “Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 microm,” Opt. Express 16(20), 16209–16214 (2008).
[CrossRef] [PubMed]

Teat, S. J.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

Thomas, P. A.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

Thomson, R. R.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109–111111 (2006).
[CrossRef]

Torner, L.

Townsend, P. D.

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 156–159 (1990).
[CrossRef]

Tuschel, D. D.

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[CrossRef]

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

Wang, H.

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

Wang, K.-M.

Wang, L.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

Webjörn, J.

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

Wesch, W.

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[CrossRef]

White, J. M.

Zhang, R.

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (6)

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115–161117 (2005).
[CrossRef]

D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908–161910 (2008).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101–241103 (2005).
[CrossRef]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109–111111 (2006).
[CrossRef]

J. Olivares, G. Garcia, A. Garcia-Navarro, F. Agullo-Lopez, O. Caballero, and A. Garcia-Cabanes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501–183503 (2005).
[CrossRef]

J. Appl. Phys. (5)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

G. R. Paz-Pujalt, D. D. Tuschel, G. Braunstein, T. Blanton, S. T. Lee, and L. M. Salter, “Characterization of proton exchange lithium niobate waveguides,” J. Appl. Phys. 76(7), 3981–3987 (1994).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101–081129 (2009).
[CrossRef]

H. Åhlfeldt, J. Webjörn, P. A. Thomas, and S. J. Teat, “Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 77(9), 4467–4476 (1995).
[CrossRef]

A. Ródenas, “L. M. maestro, M. O. Ramírez, G. A. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattices changes in femtosecond laser inscribed Nb3+: MgO:LiNbO3 optical waveguides,” J. Appl. Phys. 106, 013110–013116 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

L. Technol. (1)

U. Hempelmann, H. Herrmann, G. Mrozynski, V. Reimann, and W. Sohler, “Integrated optical proton exchanged TM-pass polarizers in LiNbO3: modelling and experimental performance,” L. Technol. 13(8), 1750–1759 (1995).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (2)

F. Schrempel, T. Opfermann, J. P. Ruske, U. Grusemann, and W. Wesch, “Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP,” Nucl. Instrum. Methods Phys. Res. B 218, 209–216 (2004).
[CrossRef]

E. Glavas, P. D. Townsend, and M. A. Foad, “Refractive index changes in proton exchange LiNbO3 by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 46(1-4), 156–159 (1990).
[CrossRef]

Nucl. Instrum. Methods Phys. Sec. B (1)

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Sec. B 168(4), 498–502 (2000).
[CrossRef]

Opt. Acta (Lond.) (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).

Opt. Commun. (2)

X. Liu, F. Lu, F. Chen, Y. Tan, R. Zhang, H. Liu, L. Wang, and L. Wang, “Reconstruction of extraordinary refractive index profiles of optical planar waveguides with single or double modes fabricated by O2+ ion implantation into lithium niobate,” Opt. Commun. 281(6), 1529–1533 (2008).
[CrossRef]

X. Liu, F. Lu, F. Chen, R. Zhang, H. Liu, L. Wang, G. Fu, and H. Wang, “Reconstruction of extraordinary refractive index profile of O2+ ion-implanted LiNbO3 single-mode channel waveguide based on beam propagation method and image processing,” Opt. Commun. 274(1), 80–84 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (1)

G. G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestr, C. Sada, N. Argiolas, M. Bazzan, and P. Mazzoldi, “Integrated Mach-Zehnder micro-interferometer on LiNbO3,” Opt. Lasers Eng. 45(3), 368–372 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Status Solidi, A Appl. Res. (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004).
[CrossRef]

Other (5)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation, (Cambridge Univ. Press, Cambridge, 1994).

L. C. Feldman, J. W. Mayer, and S. T. Picraux, Materials Analysis by Ion Channeling, (Academic Press, New York, 1982).

W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, (Academic Press, New York, 1978).

P. J. F. Ziegler, Computer code SRIM ( http://www.srim.org ).

Rsoft Design Group, Computer software BeamPROP version 8.0. ( http://www.rsoftdesign.com ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Measured relative intensity of the TM polarized light reflected from the prism versus the effective refractive index of the waveguides by (a) proton exchange at 200 °C for 3 hours at 633 nm, (b) and (c) proton exchange combined with 800 keV O ion implantation at a dose of 1×1015 ions/cm2 after annealing at 633 nm and 1539 nm, respectively.

Fig. 3
Fig. 3

The triangles and line represent the measured damage profile of O ion implanted LiNbO3 with the energy 800 keV at a dose of 1×1015 ions/cm2 and the simulated value by the SRIM2008 in arbitrary units, respectively.

Fig. 4
Fig. 4

(color online) Extraordinary refractive index profile for proton-exchanged waveguide combined with ion implantation reconstructed by ICM (the black line) and proton exchanged waveguide (the dash dot line) at 633 nm; the substrate refractive index (the dashed line); the star and the open circle represent the effective refractive indices of the measured and calculated modes, respectively.

Fig. 2
Fig. 2

(color online) RBS/channeling spectra for ion-exchanged LiNbO3 waveguide after annealing (1) and implanted LiNbO3 waveguide by 800 keV O ion at a dose of 1 × 1015 ions/cm2 (2); V and R represent the virgin and random spectra of LiNbO3 crystal for comparison, respectively.

Fig. 5
Fig. 5

(color online) The squares and the circles represent effective refractive indices of the modes in waveguide by proton exchange combined with ion implantation before and after annealing, respectively.

Fig. 6
Fig. 6

(color online) Microscope images of the ridge waveguide by Ar ion beam etching: (a) the cross section image of the ridge waveguide and (b) the top view of the ridge waveguide surface.

Fig. 7
Fig. 7

(color online) Measured near-field intensity distributions of TM00 (a) and TM10 (b) from the ridge waveguide; the distributions of simulated modes TM00 (c) and TM10 (d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n e , P = 1 2 n e 3 g 33 ( P S 2 P S ' 2 ) ,
Δ n e , V = ( n 2 + 2 ) ( n 2 1 ) ( V M ' V M ) / 6 n V M ,

Metrics