Abstract

A 1 × 2 precise electro-optic switch was demonstrated in a periodically poled lithium niobate crystal. In the experiment, the optical signal was shifted to different channels by adjusting external applied electric fields. The bandwidth of the working wavelength for the switch is nearly 2nm, which makes this device has large tolerance to the drift of the working wavelength in the practical applications. Theoretical discussion about 1 × 2 precise electro-optic switch based on this structure is also presented.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
    [CrossRef]
  2. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermo-optic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol. 20(6), 993–1000 (2002).
    [CrossRef]
  3. G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, “All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
    [CrossRef]
  4. A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express 13(1), 32–37 (2005).
    [CrossRef] [PubMed]
  5. H. Y. Wong, M. Sorel, A. C. Bryce, J. H. Marsh, and J. M. Arnold, “Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(4), 783–785 (2005).
    [CrossRef]
  6. H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
    [CrossRef]
  7. S. Bains, “PPLN inspires new applications,” Laser Focus World 34, 16–19 (1998).
  8. G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56(2), 108–110 (1990).
    [CrossRef]
  9. J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
    [CrossRef]
  10. C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
    [CrossRef]
  11. X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28(21), 2115–2117 (2003).
    [CrossRef] [PubMed]
  12. K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34(7), 1051–1053 (2009).
    [CrossRef] [PubMed]
  13. K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106–101108 (2009).
    [CrossRef]
  14. K. Liu and X. F. Chen, “Evolution of the optical polarization in a periodically poled superlattice with an external electric field,” Phys. Rev. A 80(6), 063808–063811 (2009).
    [CrossRef]
  15. Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28(16), 1460–1462 (2003).
    [CrossRef] [PubMed]
  16. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
    [CrossRef]
  17. Q. Wang and J. Yao, “A high speed 2x2 electro-optic switch using a polarization modulator,” Opt. Express 15(25), 16500–16505 (2007).
    [CrossRef] [PubMed]
  18. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,” Opt. Lett. 22(20), 1553–1555 (1997).
    [CrossRef]
  19. F. Liu, Q. Ye, F. Pang, J. Geng, R. Qu, and Z. Fang, “Polarization analysis and experimental implementation of PLZT electro-optical switch using fiber sagnac interferomerers,” J. Opt. Soc. Am. B 23(4), 709–713 (2006).
    [CrossRef]
  20. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
    [CrossRef]
  21. Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
    [CrossRef]

2009 (3)

K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34(7), 1051–1053 (2009).
[CrossRef] [PubMed]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106–101108 (2009).
[CrossRef]

K. Liu and X. F. Chen, “Evolution of the optical polarization in a periodically poled superlattice with an external electric field,” Phys. Rev. A 80(6), 063808–063811 (2009).
[CrossRef]

2008 (1)

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

2007 (1)

2006 (2)

F. Liu, Q. Ye, F. Pang, J. Geng, R. Qu, and Z. Fang, “Polarization analysis and experimental implementation of PLZT electro-optical switch using fiber sagnac interferomerers,” J. Opt. Soc. Am. B 23(4), 709–713 (2006).
[CrossRef]

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, “All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

2005 (4)

A. Fratalocchi, R. Asquini, and G. Assanto, “Integrated electro-optic switch in liquid crystals,” Opt. Express 13(1), 32–37 (2005).
[CrossRef] [PubMed]

H. Y. Wong, M. Sorel, A. C. Bryce, J. H. Marsh, and J. M. Arnold, “Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(4), 783–785 (2005).
[CrossRef]

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[CrossRef]

2003 (2)

2002 (1)

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

1998 (2)

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

S. Bains, “PPLN inspires new applications,” Laser Focus World 34, 16–19 (1998).

1997 (1)

1993 (2)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[CrossRef]

1990 (1)

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56(2), 108–110 (1990).
[CrossRef]

Arnold, J. M.

H. Y. Wong, M. Sorel, A. C. Bryce, J. H. Marsh, and J. M. Arnold, “Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(4), 783–785 (2005).
[CrossRef]

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Asquini, R.

Assanto, G.

Aubin, G.

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[CrossRef]

Bains, S.

S. Bains, “PPLN inspires new applications,” Laser Focus World 34, 16–19 (1998).

Berrettini, G.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, “All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

Bogoni, A.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, “All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

Bryce, A. C.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

H. Y. Wong, M. Sorel, A. C. Bryce, J. H. Marsh, and J. M. Arnold, “Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(4), 783–785 (2005).
[CrossRef]

Byer, R. L.

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56(2), 108–110 (1990).
[CrossRef]

Chen, X. F.

K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34(7), 1051–1053 (2009).
[CrossRef] [PubMed]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106–101108 (2009).
[CrossRef]

K. Liu and X. F. Chen, “Evolution of the optical polarization in a periodically poled superlattice with an external electric field,” Phys. Rev. A 80(6), 063808–063811 (2009).
[CrossRef]

X. F. Chen, J. H. Shi, Y. P. Chen, Y. M. Zhu, Y. X. Xia, and Y. L. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28(21), 2115–2117 (2003).
[CrossRef] [PubMed]

Chen, Y. H.

Chen, Y. L.

Chen, Y. P.

Eom, T.-J.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Fang, Z.

Fejer, M. M.

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56(2), 108–110 (1990).
[CrossRef]

Fratalocchi, A.

Geng, J.

Goh, T.

Gosselin, S.

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[CrossRef]

He, J. L.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

Himeno, A.

Huang, Y. C.

Jundt, D. H.

Kasahara, R.

Kawahara, M.

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[CrossRef]

Kee, C.-S.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Ko, D.-K.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Krysa, A.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Lee, J.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Lee, Y. L.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Liu, F.

Liu, K.

K. Liu and X. F. Chen, “Evolution of the optical polarization in a periodically poled superlattice with an external electric field,” Phys. Rev. A 80(6), 063808–063811 (2009).
[CrossRef]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106–101108 (2009).
[CrossRef]

K. Liu, J. H. Shi, and X. F. Chen, “Electro-optical flat-top bandpass Solc-type filter in periodically poled lithium niobate,” Opt. Lett. 34(7), 1051–1053 (2009).
[CrossRef] [PubMed]

Lu, Y. L.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

Luo, G. P.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

Ma, J.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

Magel, G. A.

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56(2), 108–110 (1990).
[CrossRef]

Marsh, J. H.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

H. Y. Wong, M. Sorel, A. C. Bryce, J. H. Marsh, and J. M. Arnold, “Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(4), 783–785 (2005).
[CrossRef]

Matsui, S.

Meloni, G.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, “All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

Molchanov, V.

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Noh, Y.-C.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Oh, K.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[CrossRef]

Pang, F.

Poti, L.

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, “All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

Qu, R.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Sapriel, J.

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[CrossRef]

Shi, J. H.

Shin, W.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Sorel, M.

H. Y. Wong, M. Sorel, A. C. Bryce, J. H. Marsh, and J. M. Arnold, “Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(4), 783–785 (2005).
[CrossRef]

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Sugita, A.

Tan, W. K.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Wang, Q.

Q. Wang and J. Yao, “A high speed 2x2 electro-optic switch using a polarization modulator,” Opt. Express 15(25), 16500–16505 (2007).
[CrossRef] [PubMed]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Wong, H. Y.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

H. Y. Wong, M. Sorel, A. C. Bryce, J. H. Marsh, and J. M. Arnold, “Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(4), 783–785 (2005).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Xia, Y. X.

Xu, C. Q.

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[CrossRef]

Xu, Z. Y.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Yanagisawa, M.

Yao, J.

Yasu, M.

Ye, Q.

Yu, B.-A.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Yu, N. E.

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

Zheng, J. J.

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

Zhu, Y. M.

Appl. Phys. Lett. (6)

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56(2), 108–110 (1990).
[CrossRef]

J. J. Zheng, Y. Q. Lu, G. P. Luo, J. Ma, Y. L. Lu, N. B. Ming, J. L. He, and Z. Y. Xu, “Visible dual-wavelength light generation in optical superlattice Er: LiNbO3 through upconversion and Quasi-phase-matched frequency doubling,” Appl. Phys. Lett. 72(15), 1808–1810 (1998).
[CrossRef]

C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett. 63(26), 3559–3561 (1993).
[CrossRef]

K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106–101108 (2009).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Electron. Lett. (1)

Y. L. Lee, N. E. Yu, C.-S. Kee, D.-K. Ko, Y.-C. Noh, B.-A. Yu, W. Shin, T.-J. Eom, K. Oh, and J. Lee, “All-optical wavelength tuning in Šolc filter based on Ti:PPLN waveguide,” Electron. Lett. 44(1), 30–32 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. Y. Wong, M. Sorel, A. C. Bryce, J. H. Marsh, and J. M. Arnold, “Monolithically integrated InGaAs-AlGaInAs Mach-Zehnder interferometer optical switch using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(4), 783–785 (2005).
[CrossRef]

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum-well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, “All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

S. Bains, “PPLN inspires new applications,” Laser Focus World 34, 16–19 (1998).

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (1)

K. Liu and X. F. Chen, “Evolution of the optical polarization in a periodically poled superlattice with an external electric field,” Phys. Rev. A 80(6), 063808–063811 (2009).
[CrossRef]

Proc. SPIE (1)

J. Sapriel, V. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The theoretical results of the transmission spectra of ordinary and extraordinary waves at certain electric fields. (a), (b) show the transmission spectra at the electric fields of 0.03 kV/cm; (c), (d) show the transmission spectra at the electric fields of 1.26 kV/cm; (e), (f) show the transmission spectra at the electric fields of 3.45kV/cm; (g) presents the crosstalk between ordinary and extraordinary waves at these electric fields when the light has passed the PPLN.

Fig. 2
Fig. 2

The transmission spectra when p = 0%, ± 1%, ± 3%, ± 5%, ± 7%.

Fig. 3
Fig. 3

Experimental setup for a PPLN electro-optic switch; A PPLN crystal, which is Z cut. The sample consists of 2857 domains with the period of 21 μm. The light propagates along the X direction and a uniform electric field is applied along the Y axis of the PPLN sample. ASE, amplified spontaneous emission; OSA, optical spectrum analyzer; PBS, polarization beam splitter; the room temperature is 18.5°C.

Fig. 4
Fig. 4

The experimental transmission spectrums at electric fields of 0.5 kV/cm, 2.1 kV/cm and 4.3 kV/cm for A and B channels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ d A 1 / d x = i κ A 2 e i Δ β z d A 2 / d x = i κ A 1 e i Δ β z
{ A 1 ( 0 ) = 1 A 2 ( 0 ) = 0
{ A 1 ( z ) = e i ( Δ β / 2 ) z [ cos s z i Δ β 2 s sin s z ] A 2 ( z ) = e i ( Δ β / 2 ) z ( i κ * ) sin s z s .

Metrics