Abstract

In this paper, a method of domain wall characterization in ferroelectrics through Cherenkov second harmonic generation by localized nonlinearities is proposed. By this method, domain wall width is estimated to be less than 10nm. High spatial angular resolution of about 10mrad in the experiment reveals the fine structures of the domain walls. Combined with scanning techniques, this method can reconstruct domain wall patterns with high resolution. This method has advantages of being nondestructive, noncontact, in situ as well as of high resolution.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  2. K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of freeoelectric lithium niobate,” Appl. Phys. Lett. 6(11), 228–229 (1965).
    [CrossRef]
  3. M. Müller, E. Soergel, and K. Buse, “Visualization of ferroelectric domains with coherent light,” Opt. Lett. 28(24), 2515–2517 (2003).
    [CrossRef] [PubMed]
  4. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
    [CrossRef]
  5. G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, M. H. Garrett, J. Martin, and R. Uhrin, “Antiparallel ferroelectric domains in photorefractive barium titanate and strontium barium niobate observed by high-resolution x-ray diffraction imaging,” J. Opt. Soc. Am. B 13(11), 2636–2643 (1996).
    [CrossRef]
  6. S. Zhu and W. Cao, “Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy,” Phys. Rev. Lett. 79(13), 2558–2561 (1997).
    [CrossRef]
  7. F. Augereau, G. Despaux, and P. Saint-Gr’egoire, “Imaging ferroic domain structures with an acoustic microscope: example of PPLN,” Ferroelectrics 290(1), 29–38 (2003).
    [CrossRef]
  8. O. Tikhomirov, B. Red’kin, A. Trivelli, and J. Levy, “Visualization of 180° domain structures in uniaxial ferroelectrics using confocal scanning optical microscopy,” J. Appl. Phys. 87(4), 1932–1936 (2000).
    [CrossRef]
  9. M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
    [CrossRef]
  10. P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Cerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17(10), 447–450 (1970).
    [CrossRef]
  11. A. Zembrod, H. Puell, and J. Giordmaine, “Surface radiation from nonlinear optical polarization,” Opt. Quantum Electron. 1(1), 64–66 (1969).
  12. A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85(3), 375–377 (2004).
    [CrossRef]
  13. D. A. Scrymgeour and V. Gopalan, “Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall,” Phys. Rev. B 72(2), 024103 (2005).
    [CrossRef]
  14. J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002).
    [CrossRef]
  15. D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, “Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate,” Phys. Rev. B 71(18), 184110 (2005).
    [CrossRef]
  16. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34(6), 848–850 (2009).
    [CrossRef] [PubMed]
  17. P. Molina, M. O. Ramírez, and L. E. Bausá, “Stronitium Barium Niobate as a multifunctional two-dimensional nonlinear ‘photonic glass’,” Adv. Funct. Mater. 18(5), 709–715 (2008).
    [CrossRef]

2009

2008

P. Molina, M. O. Ramírez, and L. E. Bausá, “Stronitium Barium Niobate as a multifunctional two-dimensional nonlinear ‘photonic glass’,” Adv. Funct. Mater. 18(5), 709–715 (2008).
[CrossRef]

2005

D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, “Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate,” Phys. Rev. B 71(18), 184110 (2005).
[CrossRef]

D. A. Scrymgeour and V. Gopalan, “Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall,” Phys. Rev. B 72(2), 024103 (2005).
[CrossRef]

2004

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85(3), 375–377 (2004).
[CrossRef]

2003

M. Müller, E. Soergel, and K. Buse, “Visualization of ferroelectric domains with coherent light,” Opt. Lett. 28(24), 2515–2517 (2003).
[CrossRef] [PubMed]

F. Augereau, G. Despaux, and P. Saint-Gr’egoire, “Imaging ferroic domain structures with an acoustic microscope: example of PPLN,” Ferroelectrics 290(1), 29–38 (2003).
[CrossRef]

2002

J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002).
[CrossRef]

2000

O. Tikhomirov, B. Red’kin, A. Trivelli, and J. Levy, “Visualization of 180° domain structures in uniaxial ferroelectrics using confocal scanning optical microscopy,” J. Appl. Phys. 87(4), 1932–1936 (2000).
[CrossRef]

1998

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
[CrossRef]

1997

S. Zhu and W. Cao, “Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy,” Phys. Rev. Lett. 79(13), 2558–2561 (1997).
[CrossRef]

1996

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

1970

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Cerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17(10), 447–450 (1970).
[CrossRef]

1969

A. Zembrod, H. Puell, and J. Giordmaine, “Surface radiation from nonlinear optical polarization,” Opt. Quantum Electron. 1(1), 64–66 (1969).

1965

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of freeoelectric lithium niobate,” Appl. Phys. Lett. 6(11), 228–229 (1965).
[CrossRef]

Arie, A.

Augereau, F.

F. Augereau, G. Despaux, and P. Saint-Gr’egoire, “Imaging ferroic domain structures with an acoustic microscope: example of PPLN,” Ferroelectrics 290(1), 29–38 (2003).
[CrossRef]

Bang, O.

Bausá, L. E.

P. Molina, M. O. Ramírez, and L. E. Bausá, “Stronitium Barium Niobate as a multifunctional two-dimensional nonlinear ‘photonic glass’,” Adv. Funct. Mater. 18(5), 709–715 (2008).
[CrossRef]

Belmonte, M.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
[CrossRef]

Brillert, C.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Buse, K.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Canalias, C.

J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002).
[CrossRef]

Cao, W.

S. Zhu and W. Cao, “Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy,” Phys. Rev. Lett. 79(13), 2558–2561 (1997).
[CrossRef]

Clemens, R.

J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002).
[CrossRef]

Cronin-Golomb, M.

Despaux, G.

F. Augereau, G. Despaux, and P. Saint-Gr’egoire, “Imaging ferroic domain structures with an acoustic microscope: example of PPLN,” Ferroelectrics 290(1), 29–38 (2003).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Flörsheimer, M.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Fogarty, G.

Fragemann, A.

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85(3), 375–377 (2004).
[CrossRef]

Fuchs, H.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Garrett, M. H.

Giordmaine, J.

A. Zembrod, H. Puell, and J. Giordmaine, “Surface radiation from nonlinear optical polarization,” Opt. Quantum Electron. 1(1), 64–66 (1969).

Gopalan, V.

D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, “Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate,” Phys. Rev. B 71(18), 184110 (2005).
[CrossRef]

D. A. Scrymgeour and V. Gopalan, “Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall,” Phys. Rev. B 72(2), 024103 (2005).
[CrossRef]

Heuer, L.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Hofmann, D.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
[CrossRef]

Itagi, A.

D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, “Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate,” Phys. Rev. B 71(18), 184110 (2005).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Karlsson, H.

J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002).
[CrossRef]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
[CrossRef]

Kivshar, Y. S.

Krolikowski, W.

Kubitscheck, U.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Laor, U.

Laurell, F.

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85(3), 375–377 (2004).
[CrossRef]

J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002).
[CrossRef]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
[CrossRef]

Levinstein, H. J.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of freeoelectric lithium niobate,” Appl. Phys. Lett. 6(11), 228–229 (1965).
[CrossRef]

Levy, J.

O. Tikhomirov, B. Red’kin, A. Trivelli, and J. Levy, “Visualization of 180° domain structures in uniaxial ferroelectrics using confocal scanning optical microscopy,” J. Appl. Phys. 87(4), 1932–1936 (2000).
[CrossRef]

Loiacono, G. M.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of freeoelectric lithium niobate,” Appl. Phys. Lett. 6(11), 228–229 (1965).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Martin, J.

Martin, R. J.

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Cerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17(10), 447–450 (1970).
[CrossRef]

Molina, P.

P. Molina, M. O. Ramírez, and L. E. Bausá, “Stronitium Barium Niobate as a multifunctional two-dimensional nonlinear ‘photonic glass’,” Adv. Funct. Mater. 18(5), 709–715 (2008).
[CrossRef]

Müller, M.

Nassau, K.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of freeoelectric lithium niobate,” Appl. Phys. Lett. 6(11), 228–229 (1965).
[CrossRef]

Neshev, D. N.

Paschotta, R.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Pasiskevicius, V.

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85(3), 375–377 (2004).
[CrossRef]

Pedersen, K.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
[CrossRef]

Puell, H.

A. Zembrod, H. Puell, and J. Giordmaine, “Surface radiation from nonlinear optical polarization,” Opt. Quantum Electron. 1(1), 64–66 (1969).

Ramírez, M. O.

P. Molina, M. O. Ramírez, and L. E. Bausá, “Stronitium Barium Niobate as a multifunctional two-dimensional nonlinear ‘photonic glass’,” Adv. Funct. Mater. 18(5), 709–715 (2008).
[CrossRef]

Rao, K. V.

J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002).
[CrossRef]

Red’kin, B.

O. Tikhomirov, B. Red’kin, A. Trivelli, and J. Levy, “Visualization of 180° domain structures in uniaxial ferroelectrics using confocal scanning optical microscopy,” J. Appl. Phys. 87(4), 1932–1936 (2000).
[CrossRef]

Saint-Gr’egoire, P.

F. Augereau, G. Despaux, and P. Saint-Gr’egoire, “Imaging ferroic domain structures with an acoustic microscope: example of PPLN,” Ferroelectrics 290(1), 29–38 (2003).
[CrossRef]

Saltiel, S. M.

Saxena, A.

D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, “Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate,” Phys. Rev. B 71(18), 184110 (2005).
[CrossRef]

Schreiber, G.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Scrymgeour, D. A.

D. A. Scrymgeour and V. Gopalan, “Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall,” Phys. Rev. B 72(2), 024103 (2005).
[CrossRef]

D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, “Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate,” Phys. Rev. B 71(18), 184110 (2005).
[CrossRef]

Skettrup, T.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
[CrossRef]

Soergel, E.

Sohler, W.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Steiner, B.

Swart, P. J.

D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, “Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate,” Phys. Rev. B 71(18), 184110 (2005).
[CrossRef]

Tien, P. K.

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Cerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17(10), 447–450 (1970).
[CrossRef]

Tikhomirov, O.

O. Tikhomirov, B. Red’kin, A. Trivelli, and J. Levy, “Visualization of 180° domain structures in uniaxial ferroelectrics using confocal scanning optical microscopy,” J. Appl. Phys. 87(4), 1932–1936 (2000).
[CrossRef]

Trivelli, A.

O. Tikhomirov, B. Red’kin, A. Trivelli, and J. Levy, “Visualization of 180° domain structures in uniaxial ferroelectrics using confocal scanning optical microscopy,” J. Appl. Phys. 87(4), 1932–1936 (2000).
[CrossRef]

Uhrin, R.

Ulrich, R.

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Cerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17(10), 447–450 (1970).
[CrossRef]

Verbeek, C.

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Wittborn, J.

J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002).
[CrossRef]

Zembrod, A.

A. Zembrod, H. Puell, and J. Giordmaine, “Surface radiation from nonlinear optical polarization,” Opt. Quantum Electron. 1(1), 64–66 (1969).

Zhu, S.

S. Zhu and W. Cao, “Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy,” Phys. Rev. Lett. 79(13), 2558–2561 (1997).
[CrossRef]

Adv. Funct. Mater.

P. Molina, M. O. Ramírez, and L. E. Bausá, “Stronitium Barium Niobate as a multifunctional two-dimensional nonlinear ‘photonic glass’,” Adv. Funct. Mater. 18(5), 709–715 (2008).
[CrossRef]

Appl. Phys. B

M. Flörsheimer, R. Paschotta, U. Kubitscheck, C. Brillert, D. Hofmann, L. Heuer, G. Schreiber, C. Verbeek, W. Sohler, and H. Fuchs, “Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions,” Appl. Phys. B 67(5), 593–599 (1998).
[CrossRef]

Appl. Phys. Lett.

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Cerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17(10), 447–450 (1970).
[CrossRef]

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of freeoelectric lithium niobate,” Appl. Phys. Lett. 6(11), 228–229 (1965).
[CrossRef]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett. 73(13), 1814–1816 (1998).
[CrossRef]

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Second-order nonlinearities in domain walls of periodically poled KTiOPO4,” Appl. Phys. Lett. 85(3), 375–377 (2004).
[CrossRef]

J. Wittborn, C. Canalias, K. V. Rao, R. Clemens, H. Karlsson, and F. Laurell, “Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy,” Appl. Phys. Lett. 80(9), 1622–1624 (2002).
[CrossRef]

Ferroelectrics

F. Augereau, G. Despaux, and P. Saint-Gr’egoire, “Imaging ferroic domain structures with an acoustic microscope: example of PPLN,” Ferroelectrics 290(1), 29–38 (2003).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

J. Appl. Phys.

O. Tikhomirov, B. Red’kin, A. Trivelli, and J. Levy, “Visualization of 180° domain structures in uniaxial ferroelectrics using confocal scanning optical microscopy,” J. Appl. Phys. 87(4), 1932–1936 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Quantum Electron.

A. Zembrod, H. Puell, and J. Giordmaine, “Surface radiation from nonlinear optical polarization,” Opt. Quantum Electron. 1(1), 64–66 (1969).

Phys. Rev. B

D. A. Scrymgeour, V. Gopalan, A. Itagi, A. Saxena, and P. J. Swart, “Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate,” Phys. Rev. B 71(18), 184110 (2005).
[CrossRef]

D. A. Scrymgeour and V. Gopalan, “Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall,” Phys. Rev. B 72(2), 024103 (2005).
[CrossRef]

Phys. Rev. Lett.

S. Zhu and W. Cao, “Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy,” Phys. Rev. Lett. 79(13), 2558–2561 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of CSHG patterns of different ratio of beam width over domain wall width rb/rdw; and (b) Calculated CSHG’s angular distribution changes with the increasing of rb/rdw. When rb/rdw = 1, the CSHG should be conical, so its angular distribution is 2π, as indicated as 360°. When rb/rdw>100, this pair of CSHGs are well-collimated.

Fig. 2
Fig. 2

(a) and (b) are straight domain walls with high and low qualities respectively; (c) two high-quality domain walls with 150° angle; (d), (e) and (f) are corresponding CSHGs to domain walls in (a), (b) and (c).

Fig. 3
Fig. 3

CSHG patterns which reveal the fine structures of the domain wall. The spatial angular resolution is about 10mrad.

Fig. 4
Fig. 4

(a) Trigonal domain wall patterns on the + z surface of the sample; (b) corresponding CSHG patterns.

Fig. 5
Fig. 5

(a) Domain wall pattern after etching; (b) reconstructed wall pattern by scanning CSHG method.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( r ) = A 1 | r r 0 | e i k ( r r 0 ) d s ,

Metrics