Abstract

We analyze the optical response of a standing-wave driven four-level atomic system with double dark resonances. Fully developed double photonic band gaps arise as a result of periodically modulated refractive index within the two electromagnetically induced transparency widows. We anticipate that the dynamically induced band gaps can be used to coherently control the propagation of light-pulses with different center frequencies and may have applications in all-optical switching and routing for quantum information networks.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
    [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
    [CrossRef]
  5. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
    [CrossRef] [PubMed]
  6. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
    [CrossRef]
  7. M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
    [CrossRef] [PubMed]
  8. Q. Y. He, J. H. Wu, T.-J. Wang, and J.-Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73(5), 053813 (2006).
    [CrossRef]
  9. J. H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77(11), 113106 (2008).
    [CrossRef]
  10. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
    [CrossRef] [PubMed]
  11. A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
    [CrossRef] [PubMed]
  12. I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic bandgaps,” Phys. Rev. A 71(2), 023803 (2005).
    [CrossRef]
  13. J. H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103(13), 133601 (2009).
    [CrossRef] [PubMed]
  14. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  15. C. L. Cui, J. H. Wu, J. W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express 18(5), 4538–4546 (2010).
    [CrossRef] [PubMed]
  16. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
    [CrossRef]
  17. Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64(5), 053806 (2001).
    [CrossRef]
  18. S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
    [CrossRef]
  19. Y. P. Niu, S. Q. Gong, R. X. Li, Z. Z. Xu, and X. Y. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30(24), 3371–3373 (2005).
    [CrossRef]
  20. C. P. Liu and S. Q. Gong, “D. C. Cheng, X. J. Fan, and Z. Z. Xu, “Atom localization via interference of dark resonances,” Phys. Rev. A 73, 025801 (2006).
    [CrossRef]

2010 (1)

2009 (1)

J. H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103(13), 133601 (2009).
[CrossRef] [PubMed]

2008 (1)

J. H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77(11), 113106 (2008).
[CrossRef]

2006 (4)

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[CrossRef] [PubMed]

Q. Y. He, J. H. Wu, T.-J. Wang, and J.-Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73(5), 053813 (2006).
[CrossRef]

P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

C. P. Liu and S. Q. Gong, “D. C. Cheng, X. J. Fan, and Z. Z. Xu, “Atom localization via interference of dark resonances,” Phys. Rev. A 73, 025801 (2006).
[CrossRef]

2005 (4)

Y. P. Niu, S. Q. Gong, R. X. Li, Z. Z. Xu, and X. Y. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30(24), 3371–3373 (2005).
[CrossRef]

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic bandgaps,” Phys. Rev. A 71(2), 023803 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

2003 (2)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

2001 (1)

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64(5), 053806 (2001).
[CrossRef]

2000 (1)

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[CrossRef] [PubMed]

1999 (4)

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

André, A.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

Artoni, M.

J. H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103(13), 133601 (2009).
[CrossRef] [PubMed]

J. H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77(11), 113106 (2008).
[CrossRef]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[CrossRef] [PubMed]

Ba, N.

Bajcsy, M.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Chen, Y. C.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64(5), 053806 (2001).
[CrossRef]

Chiu, H. Y.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64(5), 053806 (2001).
[CrossRef]

Cui, C. L.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[CrossRef] [PubMed]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Friedler, I.

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic bandgaps,” Phys. Rev. A 71(2), 023803 (2005).
[CrossRef]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Gao, J. W.

Gao, J.-Y.

Q. Y. He, J. H. Wu, T.-J. Wang, and J.-Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73(5), 053813 (2006).
[CrossRef]

Gong, S. Q.

C. P. Liu and S. Q. Gong, “D. C. Cheng, X. J. Fan, and Z. Z. Xu, “Atom localization via interference of dark resonances,” Phys. Rev. A 73, 025801 (2006).
[CrossRef]

Y. P. Niu, S. Q. Gong, R. X. Li, Z. Z. Xu, and X. Y. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30(24), 3371–3373 (2005).
[CrossRef]

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[CrossRef]

He, Q. Y.

Q. Y. He, J. H. Wu, T.-J. Wang, and J.-Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73(5), 053813 (2006).
[CrossRef]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Kash, M. M.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Kurizki, G.

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic bandgaps,” Phys. Rev. A 71(2), 023803 (2005).
[CrossRef]

La Rocca, G. C.

J. H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103(13), 133601 (2009).
[CrossRef] [PubMed]

J. H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77(11), 113106 (2008).
[CrossRef]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[CrossRef] [PubMed]

Li, R. X.

Liang, X. Y.

Liao, Y. A.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64(5), 053806 (2001).
[CrossRef]

Liu, C. P.

C. P. Liu and S. Q. Gong, “D. C. Cheng, X. J. Fan, and Z. Z. Xu, “Atom localization via interference of dark resonances,” Phys. Rev. A 73, 025801 (2006).
[CrossRef]

Lukin, M. D.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Niu, Y. P.

Petrosyan, D.

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic bandgaps,” Phys. Rev. A 71(2), 023803 (2005).
[CrossRef]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Russell, P. S. J.

Sautenkov, V. A.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Su, J. J.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64(5), 053806 (2001).
[CrossRef]

Wang, T.-J.

Q. Y. He, J. H. Wu, T.-J. Wang, and J.-Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73(5), 053813 (2006).
[CrossRef]

Welch, G. R.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Wu, J. H.

C. L. Cui, J. H. Wu, J. W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express 18(5), 4538–4546 (2010).
[CrossRef] [PubMed]

J. H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103(13), 133601 (2009).
[CrossRef] [PubMed]

J. H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77(11), 113106 (2008).
[CrossRef]

Q. Y. He, J. H. Wu, T.-J. Wang, and J.-Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73(5), 053813 (2006).
[CrossRef]

Xu, Z. Z.

Yelin, S. F.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Yu, I. A.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64(5), 053806 (2001).
[CrossRef]

Zhang, Y.

Zibrov, A. S.

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Nature (2)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (6)

C. P. Liu and S. Q. Gong, “D. C. Cheng, X. J. Fan, and Z. Z. Xu, “Atom localization via interference of dark resonances,” Phys. Rev. A 73, 025801 (2006).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60(4), 3225–3228 (1999).
[CrossRef]

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64(5), 053806 (2001).
[CrossRef]

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, “Deterministic quantum logic with photons via optically induced photonic bandgaps,” Phys. Rev. A 71(2), 023803 (2005).
[CrossRef]

Q. Y. He, J. H. Wu, T.-J. Wang, and J.-Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73(5), 053813 (2006).
[CrossRef]

Phys. Rev. B (1)

J. H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77(11), 113106 (2008).
[CrossRef]

Phys. Rev. Lett. (6)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84(22), 5094–5097 (2000).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[CrossRef]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[CrossRef] [PubMed]

J. H. Wu, M. Artoni, and G. C. La Rocca, “All-optical light confinement in dynamic cavities in cold atoms,” Phys. Rev. Lett. 103(13), 133601 (2009).
[CrossRef] [PubMed]

A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94(6), 063902 (2005).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Four-level atomic system with double dark resonances.

Fig. 2
Fig. 2

Band gap structure near the first Brillouin zone boundary in terms of Bloch wave vector, and the probe reflectivity and transmissivity spectra for a 1.0 cm long atomic sample. Parameters are N 0 = 1.0 × 10 12 c m 3 , η = 0.12 , θ = 20 m r a d , γ 21 = 6 M H z , γ 31 = γ 41 = 1 K H z , Ω 0 = 40 M H z , Ω d = 3 M H z , Δ c = 0 , and Δ d = 1 M H z .

Fig. 3
Fig. 3

(Color online) Tuning of the band-gap reflectivity for different control intensities with Ω d = 2 M H z (black-solid), Ω d = 3 M H z (red-dashed), and Ω d = 4 M H z (blue-dotted). Other parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

(Color online) Pulse dynamics of an incident (black-solid) probe impinging upon a long sample with the reflected (red-dashed) and transmitted (blue-dotted) parts shown. The frequency widths and centers of the incident pulsed are δ t = 20 μ s , t 0 = 0 and (a) Δ p 0 = 2.6 M H z , (b) Δ p 0 = 2.4 M H z , (c) Δ p 0 = 2.0 M H z , (d) Δ p 0 = 3.5 M H z , (e) Δ p 0 = 3.65 M H z , (f) Δ p 0 = 4.0 M H z . Other parameters are the same as in Fig. 2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

χ p ( Δ p , z ) = 3 π 𝓍 γ 21 ( Γ 31 Γ 41 Ω d 2 ) Γ 21 ( Γ 31 Γ 41 Ω d 2 ) Γ 41 Ω c 2 ( z ) , n p ( Δ p , z ) = 1 + χ p ( Δ p , z ) ,
Ω c 2 ( z ) = Ω 0 2 [ ( 1 + R m ) 2 cos 2 ( k c z ) + ( 1 R m ) 2 sin 2 ( k c z ) ] ,
( E + ( x + a ) E ( x + a ) ) = M ( Δ p ) ( E + ( x ) E ( x ) ) = ( e i κ a E + ( x ) e i κ a E ( x ) ) ,
r ( Δ P ) = M N ( 12 ) ( Δ P ) M N ( 22 ) ( Δ P ) = M 12 sin ( N κ a ) M 22 sin ( N κ a ) sin [ ( N 1 ) κ a ] ,   t ( Δ P ) = 1 M N ( 22 ) ( Δ P ) = sin ( κ a ) M 22 sin ( N κ a ) sin [ ( N 1 ) κ a ] ,
E I t ( t ) = E 0 t e ( t t 0 ) 2 / δ t 2 ,   E I f ( Δ p ) = E 0 f e ( Δ p Δ p 0 ) 2 / δ p 2 ,
E R t ( Δ p ) = E R f ( Δ p ) e i ( Δ p Δ p 0 ) t d ( Δ p ) , E T t ( Δ p ) = E T f ( Δ p ) e i ( Δ p Δ p 0 ) t d ( Δ p ) .

Metrics